File size: 4,391 Bytes
e4d8df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import math
import logging

import numpy as np

from matplotlib import mlab
from scipy import interpolate
from decimal import Decimal, ROUND_HALF_UP

logging.getLogger("matplotlib").setLevel(logging.ERROR)


def swipe(x, fs, f0_floor=50, f0_ceil=1100, frame_period=10, sTHR=0.3):
    plim = np.array([f0_floor, f0_ceil])
    t = np.arange(0, int(1000 * len(x) / fs / (frame_period) + 1)) * (frame_period / 1000)

    log2pc = np.arange(np.log2(plim[0]) * 96, np.log2(plim[-1]) * 96)
    log2pc *= (1 / 96)

    pc = 2 ** log2pc
    S = np.zeros((len(pc), len(t))) 

    logWs = [round_matlab(elm) for elm in np.log2(4 * 2 * fs / plim)]

    ws = 2 ** np.arange(logWs[0], logWs[1] - 1, -1) 
    p0 = 4 * 2 * fs / ws 

    d = 1 + log2pc - np.log2(4 * 2 * fs / ws[0])
    fERBs = erbs2hz(np.arange(hz2erbs(pc[0] / 4), hz2erbs(fs / 2), 0.1))

    for i in range(len(ws)):
        dn = round_matlab(4 * fs / p0[i]) 
        X, f, ti = mlab.specgram(x=np.r_[np.zeros(int(ws[i] / 2)), np.r_[x, np.zeros(int(dn + ws[i] / 2))]], NFFT=ws[i], Fs=fs, window=np.hanning(ws[i] + 2)[1:-1], noverlap=max(0, np.round(ws[i] - dn)), mode='complex')

        ti = np.r_[0, ti[:-1]]
        M = np.maximum(0, interpolate.interp1d(f, np.abs(X.T), kind='cubic')(fERBs)).T

        if i == len(ws) - 1:
            j = np.where(d - (i + 1) > -1)[0]
            k = np.where(d[j] - (i + 1) < 0)[0]
        elif i == 0:
            j = np.where(d - (i + 1) < 1)[0]
            k = np.where(d[j] - (i + 1) > 0)[0]
        else:
            j = np.where(np.abs(d - (i + 1)) < 1)[0]
            k = np.arange(len(j))

        Si = pitchStrengthAllCandidates(fERBs, np.sqrt(M), pc[j])
        Si = interpolate.interp1d(ti, Si, bounds_error=False, fill_value='nan')(t) if Si.shape[1] > 1 else np.full((len(Si), len(t)), np.nan)

        mu = np.ones(j.shape)
        mu[k] = 1 - np.abs(d[j[k]] - i - 1)

        S[j, :] = S[j, :] + np.tile(mu.reshape(-1, 1), (1, Si.shape[1])) * Si


    p = np.full((S.shape[1], 1), np.nan)
    s = np.full((S.shape[1], 1), np.nan)

    for j in range(S.shape[1]):
        s[j] = np.max(S[:, j])
        i = np.argmax(S[:, j])

        if s[j] < sTHR: continue

        if i == 0: p[j] = pc[0]
        elif i == len(pc) - 1: p[j] = pc[0]
        else:
            I = np.arange(i-1, i+2)
            tc = 1 / pc[I]

            ntc = (tc / tc[1] - 1) * 2 * np.pi
            idx = np.isfinite(S[I, j])

            c = np.zeros(len(ntc))
            c += np.nan
            
            I_ = I[idx]

            if len(I_) < 2: c[idx] = (S[I, j])[0] / ntc[0]
            else: c[idx] = np.polyfit(ntc[idx], (S[I_, j]), 2)

            pval = np.polyval(c, ((1 / (2 ** np.arange(np.log2(pc[I[0]]), np.log2(pc[I[2]]) + 1 / 12 / 64, 1 / 12 / 64))) / tc[1] - 1) * 2 * np.pi)

            s[j] = np.max(pval)
            p[j] = 2 ** (np.log2(pc[I[0]]) + (np.argmax(pval)) / 12 / 64)

    p = p.flatten()
    p[np.isnan(p)] = 0

    return np.array(p, dtype=np.float32), np.array(t, dtype=np.float32)

def round_matlab(n):
    return int(Decimal(n).quantize(0, ROUND_HALF_UP))

def pitchStrengthAllCandidates(f, L, pc):
    den = np.sqrt(np.sum(L * L, axis=0))
    den = np.where(den == 0, 2.220446049250313e-16, den)

    L = L / den

    S = np.zeros((len(pc), L.shape[1]))

    for j in range(len(pc)):
        S[j,:] = pitchStrengthOneCandidate(f, L, pc[j])

    return S

def pitchStrengthOneCandidate(f, L, pc):
    k = np.zeros(len(f)) 
    q = f / pc 

    for i in ([1] + sieve(int(np.fix(f[-1] / pc - 0.75)))):
        a = np.abs(q - i)
        p = a < 0.25
        
        k[p] = np.cos(2 * np.pi * q[p])

        v = np.logical_and((0.25 < a), (a < 0.75))
        k[v] = k[v] + np.cos(2 * np.pi * q[v]) / 2

    k *= np.sqrt(1 / f)
    k /= np.linalg.norm(k[k>0])

    return k @ L

def hz2erbs(hz):
    return 21.4 * np.log10(1 + hz / 229)

def erbs2hz(erbs):
    return (10 ** (erbs / 21.4) - 1) * 229

def sieve(n):
    primes = list(range(2, n+1))
    num = 2

    while num < math.sqrt(n):
        i = num

        while i <= n:
            i += num

            if i in primes: primes.remove(i)
                
        for j in primes:
            if j > num:
                num = j
                break

    return primes