|
import math
|
|
|
|
import numba as nb
|
|
import numpy as np
|
|
|
|
from matplotlib import mlab
|
|
from scipy import interpolate
|
|
from decimal import Decimal, ROUND_HALF_UP
|
|
|
|
|
|
def swipe(x, fs, f0_floor=50, f0_ceil=1100, frame_period=10, sTHR=0.3):
|
|
plim = np.array([f0_floor, f0_ceil])
|
|
t = np.arange(0, int(1000 * len(x) / fs / (frame_period) + 1)) * (frame_period / 1000)
|
|
|
|
log2pc = np.arange(np.log2(plim[0]) * 96, np.log2(plim[-1]) * 96)
|
|
log2pc *= (1 / 96)
|
|
|
|
pc = 2 ** log2pc
|
|
S = np.zeros((len(pc), len(t)))
|
|
|
|
logWs = [round_matlab(elm) for elm in np.log2(4 * 2 * fs / plim)]
|
|
ws = 2 ** np.arange(logWs[0], logWs[1] - 1, -1)
|
|
p0 = 4 * 2 * fs / ws
|
|
|
|
d = 1 + log2pc - np.log2(4 * 2 * fs / ws[0])
|
|
fERBs = erbs2hz(np.arange(hz2erbs(pc[0] / 4), hz2erbs(fs / 2), 0.1))
|
|
|
|
for i in range(len(ws)):
|
|
dn = round_matlab(4 * fs / p0[i])
|
|
X, f, ti = mlab.specgram(x=np.r_[np.zeros(int(ws[i] / 2)), np.r_[x, np.zeros(int(dn + ws[i] / 2))]], NFFT=ws[i], Fs=fs, window=np.hanning(ws[i] + 2)[1:-1], noverlap=max(0, np.round(ws[i] - dn)), mode='complex')
|
|
ti = np.r_[0, ti[:-1]]
|
|
M = np.maximum(0, interpolate.interp1d(f, np.abs(X.T), kind='cubic')(fERBs)).T
|
|
|
|
if i == len(ws) - 1:
|
|
j = np.where(d - (i + 1) > -1)[0]
|
|
k = np.where(d[j] - (i + 1) < 0)[0]
|
|
elif i == 0:
|
|
j = np.where(d - (i + 1) < 1)[0]
|
|
k = np.where(d[j] - (i + 1) > 0)[0]
|
|
else:
|
|
j = np.where(np.abs(d - (i + 1)) < 1)[0]
|
|
k = np.arange(len(j))
|
|
|
|
Si = pitchStrengthAllCandidates(fERBs, np.sqrt(M), pc[j])
|
|
Si = interpolate.interp1d(ti, Si, bounds_error=False, fill_value='nan')(t) if Si.shape[1] > 1 else np.full((len(Si), len(t)), np.nan)
|
|
|
|
mu = np.ones(j.shape)
|
|
mu[k] = 1 - np.abs(d[j[k]] - i - 1)
|
|
S[j, :] = S[j, :] + np.tile(mu.reshape(-1, 1), (1, Si.shape[1])) * Si
|
|
|
|
|
|
p = np.full((S.shape[1], 1), np.nan)
|
|
s = np.full((S.shape[1], 1), np.nan)
|
|
|
|
for j in range(S.shape[1]):
|
|
s[j] = np.max(S[:, j])
|
|
i = np.argmax(S[:, j])
|
|
|
|
if s[j] < sTHR: continue
|
|
|
|
if i == 0: p[j] = pc[0]
|
|
elif i == len(pc) - 1: p[j] = pc[0]
|
|
else:
|
|
I = np.arange(i-1, i+2)
|
|
tc = 1 / pc[I]
|
|
|
|
ntc = (tc / tc[1] - 1) * 2 * np.pi
|
|
idx = np.isfinite(S[I, j])
|
|
|
|
c = np.zeros(len(ntc))
|
|
c += np.nan
|
|
|
|
I_ = I[idx]
|
|
|
|
if len(I_) < 2: c[idx] = (S[I, j])[0] / ntc[0]
|
|
else: c[idx] = np.polyfit(ntc[idx], (S[I_, j]), 2)
|
|
|
|
pval = np.polyval(c, ((1 / (2 ** np.arange(np.log2(pc[I[0]]), np.log2(pc[I[2]]) + 1 / 12 / 64, 1 / 12 / 64))) / tc[1] - 1) * 2 * np.pi)
|
|
s[j] = np.max(pval)
|
|
p[j] = 2 ** (np.log2(pc[I[0]]) + (np.argmax(pval)) / 12 / 64)
|
|
|
|
p = p.flatten()
|
|
p[np.isnan(p)] = 0
|
|
|
|
return np.array(p, dtype=np.float32), np.array(t, dtype=np.float32)
|
|
|
|
def round_matlab(n):
|
|
return int(Decimal(n).quantize(0, ROUND_HALF_UP))
|
|
|
|
def pitchStrengthAllCandidates(f, L, pc):
|
|
den = np.sqrt(np.sum(L * L, axis=0))
|
|
den = np.where(den == 0, 2.220446049250313e-16, den)
|
|
|
|
L = L / den
|
|
S = np.zeros((len(pc), L.shape[1]))
|
|
|
|
for j in range(len(pc)):
|
|
S[j,:] = pitchStrengthOneCandidate(f, L, pc[j])
|
|
|
|
return S
|
|
|
|
def pitchStrengthOneCandidate(f, L, pc):
|
|
k = np.zeros(len(f))
|
|
q = f / pc
|
|
|
|
for i in ([1] + sieve(int(np.fix(f[-1] / pc - 0.75)))):
|
|
a = np.abs(q - i)
|
|
p = a < 0.25
|
|
k[p] = np.cos(2 * np.pi * q[p])
|
|
|
|
v = np.logical_and((0.25 < a), (a < 0.75))
|
|
k[v] = k[v] + np.cos(2 * np.pi * q[v]) / 2
|
|
|
|
k *= np.sqrt(1 / f)
|
|
k /= np.linalg.norm(k[k>0])
|
|
|
|
return k @ L
|
|
|
|
def hz2erbs(hz):
|
|
return 21.4 * np.log10(1 + hz / 229)
|
|
|
|
def erbs2hz(erbs):
|
|
return (10 ** (erbs / 21.4) - 1) * 229
|
|
|
|
def sieve(n):
|
|
primes = list(range(2, n + 1))
|
|
num = 2
|
|
|
|
while num < math.sqrt(n):
|
|
i = num
|
|
|
|
while i <= n:
|
|
i += num
|
|
|
|
if i in primes: primes.remove(i)
|
|
|
|
for j in primes:
|
|
if j > num:
|
|
num = j
|
|
break
|
|
|
|
return primes
|
|
|
|
def stonemask(x, fs, temporal_positions, f0):
|
|
refined_f0 = np.copy(f0)
|
|
|
|
for i in range(len(temporal_positions)):
|
|
if f0[i] != 0:
|
|
refined_f0[i] = get_refined_f0(x, fs, temporal_positions[i], f0[i])
|
|
if abs(refined_f0[i] - f0[i]) / f0[i] > 0.2: refined_f0[i] = f0[i]
|
|
|
|
return np.array(refined_f0, dtype=np.float32)
|
|
|
|
def get_refined_f0(x, fs, current_time, current_f0):
|
|
f0_initial = current_f0
|
|
half_window_length = np.ceil(3 * fs / f0_initial / 2)
|
|
window_length_in_time = (2 * half_window_length + 1) / fs
|
|
|
|
base_time = np.arange(-half_window_length, half_window_length + 1) / fs
|
|
fft_size = 2 ** math.ceil(math.log((half_window_length * 2 + 1), 2) + 1)
|
|
|
|
base_time = np.array([float("{0:.4f}".format(elm)) for elm in base_time])
|
|
index_raw = round_matlab((current_time + base_time) * fs)
|
|
|
|
window_time = ((index_raw - 1) / fs) - current_time
|
|
main_window = 0.42 + 0.5 * np.cos(2 * math.pi * window_time / window_length_in_time) + 0.08 * np.cos(4 * math.pi * window_time / window_length_in_time)
|
|
|
|
index = np.array(np.maximum(1, np.minimum(len(x), index_raw)), dtype=int)
|
|
spectrum = np.fft.fft(x[index - 1] * main_window, fft_size)
|
|
|
|
diff_spectrum = np.fft.fft(x[index - 1] * (-(np.diff(np.r_[0, main_window]) + np.diff(np.r_[main_window, 0])) / 2), fft_size)
|
|
power_spectrum = np.abs(spectrum) ** 2
|
|
|
|
from sys import float_info
|
|
|
|
power_spectrum[power_spectrum == 0] = float_info.epsilon
|
|
instantaneous_frequency = (np.arange(fft_size) / fft_size * fs) + (np.real(spectrum) * np.imag(diff_spectrum) - np.imag(spectrum) * np.real(diff_spectrum)) / power_spectrum * fs / 2 / math.pi
|
|
|
|
trim_index = np.array([1, 2])
|
|
index_list_trim = np.array(round_matlab(f0_initial * fft_size / fs * trim_index) + 1, int)
|
|
|
|
amp_list = np.sqrt(power_spectrum[index_list_trim - 1])
|
|
f0_initial = np.sum(amp_list * instantaneous_frequency[index_list_trim - 1]) / np.sum(amp_list * trim_index)
|
|
|
|
if f0_initial < 0: return 0
|
|
|
|
trim_index = np.array([1, 2, 3, 4, 5, 6])
|
|
index_list_trim = np.array(round_matlab(f0_initial * fft_size / fs * trim_index) + 1, int)
|
|
amp_list = np.sqrt(power_spectrum[index_list_trim - 1])
|
|
|
|
return np.sum(amp_list * instantaneous_frequency[index_list_trim - 1]) / np.sum(amp_list * trim_index)
|
|
|
|
@nb.jit((nb.float32[:],), nopython=True, cache=True)
|
|
def round_matlab(x):
|
|
y = x.copy()
|
|
|
|
y[x > 0] += 0.5
|
|
y[x <= 0] -= 0.5
|
|
|
|
return y |