RVC-GUI / main /inference /convert.py
AnhP's picture
Upload 82 files
e4d8df5 verified
raw
history blame
46.2 kB
import re
import os
import sys
import time
import faiss
import torch
import shutil
import librosa
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers
import numpy as np
import soundfile as sf
import torch.nn.functional as F
from tqdm import tqdm
from scipy import signal
from distutils.util import strtobool
from fairseq import checkpoint_utils
warnings.filterwarnings("ignore")
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.algorithm.synthesizers import Synthesizer
from main.library.utils import check_predictors, check_embedders, load_audio, process_audio, merge_audio
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
config = Config()
translations = config.translations
logger = logging.getLogger(__name__)
logger.propagate = False
for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3"]:
logging.getLogger(l).setLevel(logging.ERROR)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "convert.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--pitch", type=int, default=0)
parser.add_argument("--filter_radius", type=int, default=3)
parser.add_argument("--index_rate", type=float, default=0.5)
parser.add_argument("--volume_envelope", type=float, default=1)
parser.add_argument("--protect", type=float, default=0.33)
parser.add_argument("--hop_length", type=int, default=64)
parser.add_argument("--f0_method", type=str, default="rmvpe")
parser.add_argument("--embedder_model", type=str, default="contentvec_base.pt")
parser.add_argument("--input_path", type=str, required=True)
parser.add_argument("--output_path", type=str, default="./audios/output.wav")
parser.add_argument("--export_format", type=str, default="wav")
parser.add_argument("--pth_path", type=str, required=True)
parser.add_argument("--index_path", type=str)
parser.add_argument("--f0_autotune", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--f0_autotune_strength", type=float, default=1)
parser.add_argument("--clean_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--resample_sr", type=int, default=0)
parser.add_argument("--split_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--f0_file", type=str, default=None)
parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--embedders_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--formant_shifting", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--formant_qfrency", type=float, default=0.8)
parser.add_argument("--formant_timbre", type=float, default=0.8)
return parser.parse_args()
def main():
args = parse_arguments()
pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, embedder_model, resample_sr, split_audio, checkpointing, f0_file, f0_onnx, embedders_onnx, formant_shifting, formant_qfrency, formant_timbre = args.pitch, args.filter_radius, args.index_rate, args.volume_envelope,args.protect, args.hop_length, args.f0_method, args.input_path, args.output_path, args.pth_path, args.index_path, args.f0_autotune, args.f0_autotune_strength, args.clean_audio, args.clean_strength, args.export_format, args.embedder_model, args.resample_sr, args.split_audio, args.checkpointing, args.f0_file, args.f0_onnx, args.embedders_onnx, args.formant_shifting, args.formant_qfrency, args.formant_timbre
log_data = {translations['pitch']: pitch, translations['filter_radius']: filter_radius, translations['index_strength']: index_rate, translations['volume_envelope']: volume_envelope, translations['protect']: protect, "Hop length": hop_length, translations['f0_method']: f0_method, translations['audio_path']: input_path, translations['output_path']: output_path.replace('wav', export_format), translations['model_path']: pth_path, translations['indexpath']: index_path, translations['autotune']: f0_autotune, translations['clear_audio']: clean_audio, translations['export_format']: export_format, translations['hubert_model']: embedder_model, translations['split_audio']: split_audio, translations['memory_efficient_training']: checkpointing, translations["f0_onnx_mode"]: f0_onnx, translations["embed_onnx"]: embedders_onnx}
if clean_audio: log_data[translations['clean_strength']] = clean_strength
if resample_sr != 0: log_data[translations['sample_rate']] = resample_sr
if f0_autotune: log_data[translations['autotune_rate_info']] = f0_autotune_strength
if os.path.isfile(f0_file): log_data[translations['f0_file']] = f0_file
if formant_shifting:
log_data[translations['formant_qfrency']] = formant_qfrency
log_data[translations['formant_timbre']] = formant_timbre
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
run_convert_script(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, input_path=input_path, output_path=output_path, pth_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, split_audio=split_audio, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, embedders_onnx=embedders_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
def run_batch_convert(params):
path, audio_temp, export_format, cut_files, pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, embedder_model, resample_sr, checkpointing, f0_file, f0_onnx, formant_shifting, formant_qfrency, formant_timbre = params["path"], params["audio_temp"], params["export_format"], params["cut_files"], params["pitch"], params["filter_radius"], params["index_rate"], params["volume_envelope"], params["protect"], params["hop_length"], params["f0_method"], params["pth_path"], params["index_path"], params["f0_autotune"], params["f0_autotune_strength"], params["clean_audio"], params["clean_strength"], params["embedder_model"], params["resample_sr"], params["checkpointing"], params["f0_file"], params["f0_onnx"], params["formant_shifting"], params["formant_qfrency"], params["formant_timbre"]
segment_output_path = os.path.join(audio_temp, f"output_{cut_files.index(path)}.{export_format}")
if os.path.exists(segment_output_path): os.remove(segment_output_path)
VoiceConverter().convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=path, audio_output_path=segment_output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
os.remove(path)
if os.path.exists(segment_output_path): return segment_output_path
else:
logger.warning(f"{translations['not_found_convert_file']}: {segment_output_path}")
sys.exit(1)
def run_convert_script(pitch=0, filter_radius=3, index_rate=0.5, volume_envelope=1, protect=0.5, hop_length=64, f0_method="rmvpe", input_path=None, output_path="./output.wav", pth_path=None, index_path=None, f0_autotune=False, f0_autotune_strength=1, clean_audio=False, clean_strength=0.7, export_format="wav", embedder_model="contentvec_base.pt", resample_sr=0, split_audio=False, checkpointing=False, f0_file=None, f0_onnx=False, embedders_onnx=False, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_onnx)
embedder_model += ".onnx" if embedders_onnx else ".pt"
cvt = VoiceConverter()
start_time = time.time()
pid_path = os.path.join("assets", "convert_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
if not pth_path or not os.path.exists(pth_path) or os.path.isdir(pth_path) or not pth_path.endswith((".pth", ".onnx")):
logger.warning(translations["provide_file"].format(filename=translations["model"]))
sys.exit(1)
processed_segments = []
audio_temp = os.path.join("audios_temp")
if not os.path.exists(audio_temp) and split_audio: os.makedirs(audio_temp, exist_ok=True)
if os.path.isdir(input_path):
try:
logger.info(translations["convert_batch"])
audio_files = [f for f in os.listdir(input_path) if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not audio_files:
logger.warning(translations["not_found_audio"])
sys.exit(1)
logger.info(translations["found_audio"].format(audio_files=len(audio_files)))
for audio in audio_files:
audio_path = os.path.join(input_path, audio)
output_audio = os.path.join(input_path, os.path.splitext(audio)[0] + f"_output.{export_format}")
if split_audio:
try:
cut_files, time_stamps = process_audio(logger, audio_path, audio_temp)
params_list = [{"path": path, "audio_temp": audio_temp, "export_format": export_format, "cut_files": cut_files, "pitch": pitch, "filter_radius": filter_radius, "index_rate": index_rate, "volume_envelope": volume_envelope, "protect": protect, "hop_length": hop_length, "f0_method": f0_method, "pth_path": pth_path, "index_path": index_path, "f0_autotune": f0_autotune, "f0_autotune_strength": f0_autotune_strength, "clean_audio": clean_audio, "clean_strength": clean_strength, "embedder_model": embedder_model, "resample_sr": resample_sr, "checkpointing": checkpointing, "f0_file": f0_file, "f0_onnx": f0_onnx, "formant_shifting": formant_shifting, "formant_qfrency": formant_qfrency, "formant_timbre": formant_timbre} for path in cut_files]
with tqdm(total=len(params_list), desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
for params in params_list:
processed_segments.append(run_batch_convert(params))
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
merge_audio(processed_segments, time_stamps, audio_path, output_audio, export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
logger.info(f"{translations['convert_audio']} '{audio_path}'...")
if os.path.exists(output_audio): os.remove(output_audio)
with tqdm(total=1, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=audio_path, audio_output_path=output_audio, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
logger.info(translations["convert_batch_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))
except Exception as e:
logger.error(translations["error_convert_batch_2"].format(e=e))
else:
logger.info(f"{translations['convert_audio']} '{input_path}'...")
if not os.path.exists(input_path):
logger.warning(translations["not_found_audio"])
sys.exit(1)
if os.path.exists(output_path): os.remove(output_path)
if split_audio:
try:
cut_files, time_stamps = process_audio(logger, input_path, audio_temp)
params_list = [{"path": path, "audio_temp": audio_temp, "export_format": export_format, "cut_files": cut_files, "pitch": pitch, "filter_radius": filter_radius, "index_rate": index_rate, "volume_envelope": volume_envelope, "protect": protect, "hop_length": hop_length, "f0_method": f0_method, "pth_path": pth_path, "index_path": index_path, "f0_autotune": f0_autotune, "f0_autotune_strength": f0_autotune_strength, "clean_audio": clean_audio, "clean_strength": clean_strength, "embedder_model": embedder_model, "resample_sr": resample_sr, "checkpointing": checkpointing, "f0_file": f0_file, "f0_onnx": f0_onnx, "formant_shifting": formant_shifting, "formant_qfrency": formant_qfrency, "formant_timbre": formant_timbre} for path in cut_files]
with tqdm(total=len(params_list), desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
for params in params_list:
processed_segments.append(run_batch_convert(params))
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
merge_audio(processed_segments, time_stamps, input_path, output_path.replace("wav", export_format), export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
with tqdm(total=1, desc=translations["convert_audio"], ncols=100, unit="a") as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=input_path, audio_output_path=output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, resample_sr=resample_sr, checkpointing=checkpointing, f0_file=f0_file, f0_onnx=f0_onnx, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(translations["convert_audio_success"].format(input_path=input_path, elapsed_time=f"{(time.time() - start_time):.2f}", output_path=output_path.replace('wav', export_format)))
def change_rms(source_audio, source_rate, target_audio, target_rate, rate):
rms2 = F.interpolate(torch.from_numpy(librosa.feature.rms(y=target_audio, frame_length=target_rate // 2 * 2, hop_length=target_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze()
return (target_audio * (torch.pow(F.interpolate(torch.from_numpy(librosa.feature.rms(y=source_audio, frame_length=source_rate // 2 * 2, hop_length=source_rate // 2)).float().unsqueeze(0), size=target_audio.shape[0], mode="linear").squeeze(), 1 - rate) * torch.pow(torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6), rate - 1)).numpy())
def get_providers():
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
else: providers = ["CPUExecutionProvider"]
return providers
class Autotune:
def __init__(self, ref_freqs):
self.ref_freqs = ref_freqs
self.note_dict = self.ref_freqs
def autotune_f0(self, f0, f0_autotune_strength):
autotuned_f0 = np.zeros_like(f0)
for i, freq in enumerate(f0):
autotuned_f0[i] = freq + (min(self.note_dict, key=lambda x: abs(x - freq)) - freq) * f0_autotune_strength
return autotuned_f0
class VC:
def __init__(self, tgt_sr, config):
self.x_pad = config.x_pad
self.x_query = config.x_query
self.x_center = config.x_center
self.x_max = config.x_max
self.sample_rate = 16000
self.window = 160
self.t_pad = self.sample_rate * self.x_pad
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sample_rate * self.x_query
self.t_center = self.sample_rate * self.x_center
self.t_max = self.sample_rate * self.x_max
self.time_step = self.window / self.sample_rate * 1000
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = config.device
self.ref_freqs = [49.00, 51.91, 55.00, 58.27, 61.74, 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, 92.50, 98.00, 103.83, 110.00, 116.54, 123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185.00, 196.00, 207.65, 220.00, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, 369.99, 392.00, 415.30, 440.00, 466.16, 493.88, 523.25, 554.37, 587.33, 622.25, 659.25, 698.46, 739.99, 783.99, 830.61, 880.00, 932.33, 987.77, 1046.50]
self.autotune = Autotune(self.ref_freqs)
self.note_dict = self.autotune.note_dict
def get_f0_pm(self, x, p_len):
import parselmouth
f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=self.window / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
return f0
def get_f0_mangio_crepe(self, x, p_len, hop_length, model="full", onnx=False):
from main.library.predictors.CREPE import predict
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
audio = torch.unsqueeze(torch.from_numpy(x).to(self.device, copy=True), dim=0)
if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()
p_len = p_len or x.shape[0] // hop_length
source = np.array(predict(audio.detach(), self.sample_rate, hop_length, self.f0_min, self.f0_max, model, batch_size=hop_length * 2, device=self.device, pad=True, providers=get_providers(), onnx=onnx).squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_crepe(self, x, model="full", onnx=False):
from main.library.predictors.CREPE import predict, mean, median
f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.sample_rate, self.window, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=get_providers(), onnx=onnx)
f0, pd = mean(f0, 3), median(pd, 3)
f0[pd < 0.1] = 0
return f0[0].cpu().numpy()
def get_f0_fcpe(self, x, p_len, hop_length, onnx=False, legacy=False):
from main.library.predictors.FCPE import FCPE
model_fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else"fcpe") + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03, providers=get_providers(), onnx=onnx, legacy=legacy)
f0 = model_fcpe.compute_f0(x, p_len=p_len)
del model_fcpe
return f0
def get_f0_rmvpe(self, x, legacy=False, onnx=False):
from main.library.predictors.RMVPE import RMVPE
rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), device=self.device, onnx=onnx, providers=get_providers())
f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)
del rmvpe_model
return f0
def get_f0_pyworld_wrapper(self, x, filter_radius, model="harvest"):
from main.library.predictors.WORLD_WRAPPER import PYWORLD
pw = PYWORLD()
x = x.astype(np.double)
if model == "harvest": f0, t = pw.harvest(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
elif model == "dio": f0, t = pw.dio(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
else: raise ValueError(translations["method_not_valid"])
f0 = pw.stonemask(x, self.sample_rate, t, f0)
if filter_radius > 2 or model == "dio": f0 = signal.medfilt(f0, 3)
return f0
def get_f0_pyworld(self, x, filter_radius, model="harvest"):
from main.library.predictors.pyworld import harvest, dio, stonemask
x = x.astype(np.double)
if model == "harvest": f0, t = harvest.harvest(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
elif model == "dio": f0, t = dio.dio(x, fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
else: raise ValueError(translations["method_not_valid"])
f0 = stonemask.stonemask(x, self.sample_rate, t, f0)
if filter_radius > 2 or model == "dio": f0 = signal.medfilt(f0, 3)
return f0
def get_f0_swipe(self, x):
from main.library.predictors.SWIPE import swipe
f0, _ = swipe(x.astype(np.double), self.sample_rate, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=10, device=self.device)
return f0
def get_f0_yin(self, x, hop_length, p_len):
source = np.array(librosa.yin(x.astype(np.float32), sr=self.sample_rate, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length))
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_pyin(self, x, hop_length, p_len):
f0, _, _ = librosa.pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.sample_rate, hop_length=hop_length)
source = np.array(f0)
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * p_len, len(source)) / p_len, np.arange(0, len(source)), source))
def get_f0_hybrid(self, methods_str, x, p_len, hop_length, filter_radius, onnx_mode):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack, resampled_stack = [], []
logger.debug(translations["hybrid_methods"].format(methods=methods))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
for method in methods:
f0 = None
f0_methods = {"pm": lambda: self.get_f0_pm(x, p_len), "diow": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "dio"), "dio": lambda: self.get_f0_pyworld(x, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=onnx_mode), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=onnx_mode), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=onnx_mode), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=onnx_mode), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=onnx_mode), "crepe-tiny": lambda: self.get_f0_crepe(x, "tiny", onnx=onnx_mode), "crepe-small": lambda: self.get_f0_crepe(x, "small", onnx=onnx_mode), "crepe-medium": lambda: self.get_f0_crepe(x, "medium", onnx=onnx_mode), "crepe-large": lambda: self.get_f0_crepe(x, "large", onnx=onnx_mode), "crepe-full": lambda: self.get_f0_crepe(x, "full", onnx=onnx_mode), "fcpe": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), onnx=onnx_mode), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True, onnx=onnx_mode), "rmvpe": lambda: self.get_f0_rmvpe(x, onnx=onnx_mode), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, legacy=True, onnx=onnx_mode), "harvestw": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "harvest"), "harvest": lambda: self.get_f0_pyworld(x, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, int(hop_length), p_len), "pyin": lambda: self.get_f0_pyin(x, int(hop_length), p_len), "swipe": lambda: self.get_f0_swipe(x)}
f0 = f0_methods.get(method, lambda: ValueError(translations["method_not_valid"]))()
f0_computation_stack.append(f0)
for f0 in f0_computation_stack:
resampled_stack.append(np.interp(np.linspace(0, len(f0), p_len), np.arange(len(f0)), f0))
return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
def get_f0(self, x, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength, inp_f0=None, onnx_mode=False):
f0_methods = {"pm": lambda: self.get_f0_pm(x, p_len), "diow": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "dio"), "dio": lambda: self.get_f0_pyworld(x, filter_radius, "dio"), "mangio-crepe-tiny": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "tiny", onnx=onnx_mode), "mangio-crepe-small": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "small", onnx=onnx_mode), "mangio-crepe-medium": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "medium", onnx=onnx_mode), "mangio-crepe-large": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "large", onnx=onnx_mode), "mangio-crepe-full": lambda: self.get_f0_mangio_crepe(x, p_len, int(hop_length), "full", onnx=onnx_mode), "crepe-tiny": lambda: self.get_f0_crepe(x, "tiny", onnx=onnx_mode), "crepe-small": lambda: self.get_f0_crepe(x, "small", onnx=onnx_mode), "crepe-medium": lambda: self.get_f0_crepe(x, "medium", onnx=onnx_mode), "crepe-large": lambda: self.get_f0_crepe(x, "large", onnx=onnx_mode), "crepe-full": lambda: self.get_f0_crepe(x, "full", onnx=onnx_mode), "fcpe": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), onnx=onnx_mode), "fcpe-legacy": lambda: self.get_f0_fcpe(x, p_len, int(hop_length), legacy=True, onnx=onnx_mode), "rmvpe": lambda: self.get_f0_rmvpe(x, onnx=onnx_mode), "rmvpe-legacy": lambda: self.get_f0_rmvpe(x, legacy=True, onnx=onnx_mode), "harvestw": lambda: self.get_f0_pyworld_wrapper(x, filter_radius, "harvest"), "harvest": lambda: self.get_f0_pyworld(x, filter_radius, "harvest"), "yin": lambda: self.get_f0_yin(x, int(hop_length), p_len), "pyin": lambda: self.get_f0_pyin(x, int(hop_length), p_len), "swipe": lambda: self.get_f0_swipe(x)}
f0 = self.get_f0_hybrid(f0_method, x, p_len, hop_length, filter_radius, onnx_mode) if "hybrid" in f0_method else f0_methods.get(f0_method, lambda: ValueError(translations["method_not_valid"]))()
if f0_autotune: f0 = Autotune.autotune_f0(self, f0, f0_autotune_strength)
if isinstance(f0, tuple): f0 = f0[0]
f0 *= pow(2, pitch / 12)
tf0 = self.sample_rate // self.window
if inp_f0 is not None:
replace_f0 = np.interp(list(range(np.round((inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1).astype(np.int16))), inp_f0[:, 0] * 100, inp_f0[:, 1])
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[:f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]]
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
return np.rint(f0_mel).astype(np.int32), f0.copy()
def extract_features(self, model, feats, version):
return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)
def voice_conversion(self, model, net_g, sid, audio0, pitch, pitchf, index, big_npy, index_rate, version, protect):
pitch_guidance = pitch != None and pitchf != None
feats = torch.from_numpy(audio0).float()
if feats.dim() == 2: feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
if self.embed_suffix == ".pt":
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {"source": feats.to(self.device), "padding_mask": padding_mask, "output_layer": 9 if version == "v1" else 12}
with torch.no_grad():
if self.embed_suffix == ".pt":
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
else: feats = self.extract_features(model, feats, version).to(self.device)
if protect < 0.5 and pitch_guidance: feats0 = feats.clone()
if (not isinstance(index, type(None)) and not isinstance(big_npy, type(None)) and index_rate != 0):
npy = feats[0].cpu().numpy()
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
feats = (torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch_guidance: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch_guidance:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch_guidance:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
audio1 = ((net_g.infer(feats.float(), p_len, pitch if pitch_guidance else None, pitchf.float() if pitch_guidance else None, sid)[0][0, 0]).data.cpu().float().numpy()) if self.suffix == ".pth" else (net_g.run([net_g.get_outputs()[0].name], ({net_g.get_inputs()[0].name: feats.cpu().numpy().astype(np.float32), net_g.get_inputs()[1].name: p_len.cpu().numpy(), net_g.get_inputs()[2].name: np.array([sid.cpu().item()], dtype=np.int64), net_g.get_inputs()[3].name: np.random.randn(1, 192, p_len).astype(np.float32), net_g.get_inputs()[4].name: pitch.cpu().numpy().astype(np.int64), net_g.get_inputs()[5].name: pitchf.cpu().numpy().astype(np.float32)} if pitch_guidance else {net_g.get_inputs()[0].name: feats.cpu().numpy().astype(np.float32), net_g.get_inputs()[1].name: p_len.cpu().numpy(), net_g.get_inputs()[2].name: np.array([sid.cpu().item()], dtype=np.int64), net_g.get_inputs()[3].name: np.random.randn(1, 192, p_len).astype(np.float32)}))[0][0, 0])
if self.embed_suffix == ".pt": del padding_mask
del feats, p_len, net_g
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
return audio1
def pipeline(self, model, net_g, sid, audio, pitch, f0_method, file_index, index_rate, pitch_guidance, filter_radius, tgt_sr, resample_sr, volume_envelope, version, protect, hop_length, f0_autotune, f0_autotune_strength, suffix, embed_suffix, f0_file=None, f0_onnx=False):
self.suffix = suffix
self.embed_suffix = embed_suffix
if file_index != "" and os.path.exists(file_index) and index_rate != 0:
try:
index = faiss.read_index(file_index)
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception as e:
logger.error(translations["read_faiss_index_error"].format(e=e))
index = big_npy = None
else: index = big_npy = None
opt_ts, audio_opt = [], []
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query : t + self.t_query]) == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min())[0][0])
s = 0
t, inp_f0 = None, None
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
p_len = audio_pad.shape[0] // self.window
if hasattr(f0_file, "name"):
try:
with open(f0_file.name, "r") as f:
raw_lines = f.read()
if len(raw_lines) > 0:
inp_f0 = []
for line in raw_lines.strip("\n").split("\n"):
inp_f0.append([float(i) for i in line.split(",")])
inp_f0 = np.array(inp_f0, dtype=np.float32)
except:
logger.error(translations["error_readfile"])
inp_f0 = None
if pitch_guidance:
pitch, pitchf = self.get_f0(audio_pad, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength, inp_f0, onnx_mode=f0_onnx)
pitch, pitchf = pitch[:p_len], pitchf[:p_len]
if self.device == "mps": pitchf = pitchf.astype(np.float32)
pitch, pitchf = torch.tensor(pitch, device=self.device).unsqueeze(0).long(), torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
for t in opt_ts:
t = t // self.window * self.window
audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, pitchf[:, s // self.window : (t + self.t_pad2) // self.window] if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
s = t
audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[t:], (pitch[:, t // self.window :] if t is not None else pitch) if pitch_guidance else None, (pitchf[:, t // self.window :] if t is not None else pitchf) if pitch_guidance else None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
if volume_envelope != 1: audio_opt = change_rms(audio, self.sample_rate, audio_opt, tgt_sr, volume_envelope)
if resample_sr >= self.sample_rate and tgt_sr != resample_sr: audio_opt = librosa.resample(audio_opt, orig_sr=tgt_sr, target_sr=resample_sr, res_type="soxr_vhq")
audio_max = np.abs(audio_opt).max() / 0.99
if audio_max > 1: audio_opt /= audio_max
if pitch_guidance: del pitch, pitchf
del sid
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
return audio_opt
class VoiceConverter:
def __init__(self):
self.config = config
self.hubert_model = None
self.tgt_sr = None
self.net_g = None
self.vc = None
self.cpt = None
self.version = None
self.n_spk = None
self.use_f0 = None
self.loaded_model = None
self.vocoder = "Default"
self.checkpointing = False
def load_embedders(self, embedder_model):
embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
if not os.path.exists(embedder_model_path) and not embedder_model.endswith((".pt", ".onnx")): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedder_model.endswith(".pt"):
models, _, _ = checkpoint_utils.load_model_ensemble_and_task([embedder_model_path], suffix="")
self.embed_suffix = ".pt"
self.hubert_model = models[0].to(self.config.device).float().eval()
else:
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
self.embed_suffix = ".onnx"
self.hubert_model = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=get_providers())
except Exception as e:
logger.error(translations["read_model_error"].format(e=e))
def convert_audio(self, audio_input_path, audio_output_path, model_path, index_path, embedder_model, pitch, f0_method, index_rate, volume_envelope, protect, hop_length, f0_autotune, f0_autotune_strength, filter_radius, clean_audio, clean_strength, export_format, resample_sr = 0, sid = 0, checkpointing = False, f0_file = None, f0_onnx = False, formant_shifting = False, formant_qfrency=0.8, formant_timbre=0.8):
try:
self.get_vc(model_path, sid)
audio = load_audio(logger, audio_input_path, 16000, formant_shifting=formant_shifting, formant_qfrency=formant_qfrency, formant_timbre=formant_timbre)
self.checkpointing = checkpointing
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1: audio /= audio_max
if not self.hubert_model: self.load_embedders(embedder_model)
if self.tgt_sr != resample_sr >= 16000: self.tgt_sr = resample_sr
target_sr = min([8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 96000], key=lambda x: abs(x - self.tgt_sr))
audio_output = self.vc.pipeline(model=self.hubert_model, net_g=self.net_g, sid=sid, audio=audio, pitch=pitch, f0_method=f0_method, file_index=(index_path.strip().strip('"').strip("\n").strip('"').strip().replace("trained", "added")), index_rate=index_rate, pitch_guidance=self.use_f0, filter_radius=filter_radius, tgt_sr=self.tgt_sr, resample_sr=target_sr, volume_envelope=volume_envelope, version=self.version, protect=protect, hop_length=hop_length, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, suffix=self.suffix, embed_suffix=self.embed_suffix, f0_file=f0_file, f0_onnx=f0_onnx)
if clean_audio:
from main.tools.noisereduce import reduce_noise
audio_output = reduce_noise(y=audio_output, sr=target_sr, prop_decrease=clean_strength, device=config.device)
sf.write(audio_output_path, audio_output, target_sr, format=export_format)
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
import traceback
logger.debug(traceback.format_exc())
def get_vc(self, weight_root, sid):
if sid == "" or sid == []:
self.cleanup()
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
if not self.loaded_model or self.loaded_model != weight_root:
self.loaded_model = weight_root
self.load_model()
if self.cpt is not None: self.setup()
def cleanup(self):
if self.hubert_model is not None:
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available(): torch.cuda.empty_cache()
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
self.cpt = None
def load_model(self):
if os.path.isfile(self.loaded_model):
if self.loaded_model.endswith(".pth"): self.cpt = torch.load(self.loaded_model, map_location="cpu")
else:
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
self.cpt = onnxruntime.InferenceSession(self.loaded_model, sess_options=sess_options, providers=get_providers())
else: self.cpt = None
def setup(self):
if self.cpt is not None:
if self.loaded_model.endswith(".pth"):
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.vocoder = self.cpt.get("vocoder", "Default")
self.net_g = Synthesizer(*self.cpt["config"], use_f0=self.use_f0, text_enc_hidden_dim=768 if self.version == "v2" else 256, vocoder=self.vocoder, checkpointing=self.checkpointing)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device).float()
self.n_spk = self.cpt["config"][-3]
self.suffix = ".pth"
else:
import json
import onnx
model = onnx.load(self.loaded_model)
metadata_dict = None
for prop in model.metadata_props:
if prop.key == "model_info":
metadata_dict = json.loads(prop.value)
break
self.net_g = self.cpt
self.tgt_sr = metadata_dict.get("sr", 32000)
self.use_f0 = metadata_dict.get("f0", 1)
self.suffix = ".onnx"
self.vc = VC(self.tgt_sr, self.config)
if __name__ == "__main__": main()