|
import os
|
|
import sys
|
|
import time
|
|
import logging
|
|
import librosa
|
|
import argparse
|
|
import logging.handlers
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
from scipy import signal
|
|
from scipy.io import wavfile
|
|
from distutils.util import strtobool
|
|
from concurrent.futures import ProcessPoolExecutor, as_completed
|
|
|
|
sys.path.append(os.getcwd())
|
|
|
|
from main.library.utils import load_audio
|
|
from main.configs.config import Config
|
|
|
|
logger = logging.getLogger(__name__)
|
|
for l in ["numba.core.byteflow", "numba.core.ssa", "numba.core.interpreter"]:
|
|
logging.getLogger(l).setLevel(logging.ERROR)
|
|
|
|
OVERLAP, MAX_AMPLITUDE, ALPHA, HIGH_PASS_CUTOFF, SAMPLE_RATE_16K = 0.3, 0.9, 0.75, 48, 16000
|
|
config = Config()
|
|
translations = config.translations
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_name", type=str, required=True)
|
|
parser.add_argument("--dataset_path", type=str, default="./dataset")
|
|
parser.add_argument("--sample_rate", type=int, required=True)
|
|
parser.add_argument("--cpu_cores", type=int, default=2)
|
|
parser.add_argument("--cut_preprocess", type=lambda x: bool(strtobool(x)), default=True)
|
|
parser.add_argument("--process_effects", type=lambda x: bool(strtobool(x)), default=False)
|
|
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
|
|
parser.add_argument("--clean_strength", type=float, default=0.7)
|
|
|
|
return parser.parse_args()
|
|
|
|
class Slicer:
|
|
def __init__(self, sr, threshold = -40.0, min_length = 5000, min_interval = 300, hop_size = 20, max_sil_kept = 5000):
|
|
if not min_length >= min_interval >= hop_size: raise ValueError(translations["min_length>=min_interval>=hop_size"])
|
|
if not max_sil_kept >= hop_size: raise ValueError(translations["max_sil_kept>=hop_size"])
|
|
|
|
min_interval = sr * min_interval / 1000
|
|
self.threshold = 10 ** (threshold / 20.0)
|
|
self.hop_size = round(sr * hop_size / 1000)
|
|
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
|
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
|
self.min_interval = round(min_interval / self.hop_size)
|
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
|
|
|
def _apply_slice(self, waveform, begin, end):
|
|
start_idx = begin * self.hop_size
|
|
|
|
if len(waveform.shape) > 1: return waveform[:, start_idx:min(waveform.shape[1], end * self.hop_size)]
|
|
else: return waveform[start_idx:min(waveform.shape[0], end * self.hop_size)]
|
|
|
|
def slice(self, waveform):
|
|
samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform
|
|
if samples.shape[0] <= self.min_length: return [waveform]
|
|
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
|
sil_tags = []
|
|
silence_start, clip_start = None, 0
|
|
|
|
for i, rms in enumerate(rms_list):
|
|
if rms < self.threshold:
|
|
if silence_start is None: silence_start = i
|
|
continue
|
|
|
|
if silence_start is None: continue
|
|
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
|
need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)
|
|
|
|
if not is_leading_silence and not need_slice_middle:
|
|
silence_start = None
|
|
continue
|
|
|
|
if i - silence_start <= self.max_sil_kept:
|
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
|
sil_tags.append((0, pos) if silence_start == 0 else (pos, pos))
|
|
clip_start = pos
|
|
elif i - silence_start <= self.max_sil_kept * 2:
|
|
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
|
|
pos += i - self.max_sil_kept
|
|
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
|
|
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
clip_start = pos_r
|
|
else:
|
|
sil_tags.append((min((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos), max(pos_r, pos)))
|
|
clip_start = max(pos_r, pos)
|
|
else:
|
|
pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)
|
|
sil_tags.append((0, pos_r) if silence_start == 0 else ((rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start), pos_r))
|
|
clip_start = pos_r
|
|
|
|
silence_start = None
|
|
total_frames = rms_list.shape[0]
|
|
if (silence_start is not None and total_frames - silence_start >= self.min_interval): sil_tags.append((rms_list[silence_start : min(total_frames, silence_start + self.max_sil_kept) + 1].argmin() + silence_start, total_frames + 1))
|
|
|
|
if not sil_tags: return [waveform]
|
|
else:
|
|
chunks = []
|
|
if sil_tags[0][0] > 0: chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
|
|
|
for i in range(len(sil_tags) - 1):
|
|
chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
|
|
|
|
if sil_tags[-1][1] < total_frames: chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
|
|
return chunks
|
|
|
|
def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
|
|
y = np.pad(y, (int(frame_length // 2), int(frame_length // 2)), mode=pad_mode)
|
|
axis = -1
|
|
x_shape_trimmed = list(y.shape)
|
|
x_shape_trimmed[axis] -= frame_length - 1
|
|
xw = np.moveaxis(np.lib.stride_tricks.as_strided(y, shape=tuple(x_shape_trimmed) + tuple([frame_length]), strides=y.strides + tuple([y.strides[axis]])), -1, axis - 1 if axis < 0 else axis + 1)
|
|
slices = [slice(None)] * xw.ndim
|
|
slices[axis] = slice(0, None, hop_length)
|
|
return np.sqrt(np.mean(np.abs(xw[tuple(slices)]) ** 2, axis=-2, keepdims=True))
|
|
|
|
class PreProcess:
|
|
def __init__(self, sr, exp_dir, per):
|
|
self.slicer = Slicer(sr=sr, threshold=-42, min_length=1500, min_interval=400, hop_size=15, max_sil_kept=500)
|
|
self.sr = sr
|
|
self.b_high, self.a_high = signal.butter(N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr)
|
|
self.per = per
|
|
self.exp_dir = exp_dir
|
|
self.device = "cpu"
|
|
self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
|
|
self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")
|
|
os.makedirs(self.gt_wavs_dir, exist_ok=True)
|
|
os.makedirs(self.wavs16k_dir, exist_ok=True)
|
|
|
|
def _normalize_audio(self, audio):
|
|
tmp_max = np.abs(audio).max()
|
|
if tmp_max > 2.5: return None
|
|
return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio
|
|
|
|
def process_audio_segment(self, normalized_audio, sid, idx0, idx1):
|
|
if normalized_audio is None:
|
|
logger.debug(f"{sid}-{idx0}-{idx1}-filtered")
|
|
return
|
|
|
|
wavfile.write(os.path.join(self.gt_wavs_dir, f"{sid}_{idx0}_{idx1}.wav"), self.sr, normalized_audio.astype(np.float32))
|
|
wavfile.write(os.path.join(self.wavs16k_dir, f"{sid}_{idx0}_{idx1}.wav"), SAMPLE_RATE_16K, librosa.resample(normalized_audio, orig_sr=self.sr, target_sr=SAMPLE_RATE_16K, res_type="soxr_vhq").astype(np.float32))
|
|
|
|
def process_audio(self, path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength):
|
|
try:
|
|
audio = load_audio(logger, path, self.sr)
|
|
|
|
if process_effects:
|
|
audio = signal.lfilter(self.b_high, self.a_high, audio)
|
|
audio = self._normalize_audio(audio)
|
|
|
|
if clean_dataset:
|
|
from main.tools.noisereduce import reduce_noise
|
|
audio = reduce_noise(y=audio, sr=self.sr, prop_decrease=clean_strength, device=config.device)
|
|
|
|
idx1 = 0
|
|
if cut_preprocess:
|
|
for audio_segment in self.slicer.slice(audio):
|
|
i = 0
|
|
|
|
while 1:
|
|
start = int(self.sr * (self.per - OVERLAP) * i)
|
|
i += 1
|
|
|
|
if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
|
|
self.process_audio_segment(audio_segment[start : start + int(self.per * self.sr)], sid, idx0, idx1)
|
|
idx1 += 1
|
|
else:
|
|
self.process_audio_segment(audio_segment[start:], sid, idx0, idx1)
|
|
idx1 += 1
|
|
break
|
|
else: self.process_audio_segment(audio, sid, idx0, idx1)
|
|
except Exception as e:
|
|
raise RuntimeError(f"{translations['process_audio_error']}: {e}")
|
|
|
|
def process_file(args):
|
|
pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength = (args)
|
|
file_path, idx0, sid = file
|
|
pp.process_audio(file_path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength)
|
|
|
|
def preprocess_training_set(input_root, sr, num_processes, exp_dir, per, cut_preprocess, process_effects, clean_dataset, clean_strength):
|
|
start_time = time.time()
|
|
|
|
pp = PreProcess(sr, exp_dir, per)
|
|
logger.info(translations["start_preprocess"].format(num_processes=num_processes))
|
|
files = []
|
|
idx = 0
|
|
|
|
for root, _, filenames in os.walk(input_root):
|
|
try:
|
|
sid = 0 if root == input_root else int(os.path.basename(root))
|
|
|
|
for f in filenames:
|
|
if f.lower().endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3")):
|
|
files.append((os.path.join(root, f), idx, sid))
|
|
idx += 1
|
|
except ValueError:
|
|
raise ValueError(f"{translations['not_integer']} '{os.path.basename(root)}'.")
|
|
|
|
with tqdm(total=len(files), ncols=100, unit="f") as pbar:
|
|
with ProcessPoolExecutor(max_workers=num_processes) as executor:
|
|
futures = [executor.submit(process_file, (pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength)) for file in files]
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
raise RuntimeError(f"{translations['process_error']}: {e}")
|
|
pbar.update(1)
|
|
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
|
|
|
|
elapsed_time = time.time() - start_time
|
|
logger.info(translations["preprocess_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_arguments()
|
|
experiment_directory = os.path.join("assets", "logs", args.model_name)
|
|
num_processes = args.cpu_cores
|
|
num_processes = 2 if num_processes is None else int(num_processes)
|
|
dataset = args.dataset_path
|
|
sample_rate = args.sample_rate
|
|
cut_preprocess = args.cut_preprocess
|
|
preprocess_effects = args.process_effects
|
|
clean_dataset = args.clean_dataset
|
|
clean_strength = args.clean_strength
|
|
|
|
os.makedirs(experiment_directory, exist_ok=True)
|
|
|
|
if logger.hasHandlers(): logger.handlers.clear()
|
|
else:
|
|
console_handler = logging.StreamHandler()
|
|
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
console_handler.setFormatter(console_formatter)
|
|
console_handler.setLevel(logging.INFO)
|
|
file_handler = logging.handlers.RotatingFileHandler(os.path.join(experiment_directory, "preprocess.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
|
|
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
file_handler.setFormatter(file_formatter)
|
|
file_handler.setLevel(logging.DEBUG)
|
|
logger.addHandler(console_handler)
|
|
logger.addHandler(file_handler)
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
log_data = {translations['modelname']: args.model_name, translations['export_process']: experiment_directory, translations['dataset_folder']: dataset, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, translations['split_audio']: cut_preprocess, translations['preprocess_effect']: preprocess_effects, translations['clear_audio']: clean_dataset}
|
|
if clean_dataset: log_data[translations['clean_strength']] = clean_strength
|
|
|
|
for key, value in log_data.items():
|
|
logger.debug(f"{key}: {value}")
|
|
|
|
pid_path = os.path.join(experiment_directory, "preprocess_pid.txt")
|
|
with open(pid_path, "w") as pid_file:
|
|
pid_file.write(str(os.getpid()))
|
|
|
|
try:
|
|
preprocess_training_set(dataset, sample_rate, num_processes, experiment_directory, 3.7, cut_preprocess, preprocess_effects, clean_dataset, clean_strength)
|
|
except Exception as e:
|
|
logger.error(f"{translations['process_audio_error']} {e}")
|
|
import traceback
|
|
logger.debug(traceback.format_exc())
|
|
|
|
if os.path.exists(pid_path): os.remove(pid_path)
|
|
logger.info(f"{translations['preprocess_model_success']} {args.model_name}") |