|
import os |
|
import re |
|
import sys |
|
import glob |
|
import json |
|
import torch |
|
import logging |
|
import hashlib |
|
import argparse |
|
import datetime |
|
import warnings |
|
import logging.handlers |
|
|
|
import numpy as np |
|
import torch.utils.data |
|
import matplotlib.pyplot as plt |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
|
|
from tqdm import tqdm |
|
from time import time as ttime |
|
from scipy.io.wavfile import read |
|
from collections import OrderedDict |
|
from random import randint, shuffle |
|
|
|
from torch.nn import functional as F |
|
from distutils.util import strtobool |
|
from torch.utils.data import DataLoader |
|
from torch.cuda.amp import GradScaler, autocast |
|
from torch.utils.tensorboard import SummaryWriter |
|
from librosa.filters import mel as librosa_mel_fn |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.nn.utils.parametrizations import spectral_norm, weight_norm |
|
|
|
current_dir = os.getcwd() |
|
sys.path.append(current_dir) |
|
|
|
from main.configs.config import Config |
|
from main.library.algorithm.residuals import LRELU_SLOPE |
|
from main.library.algorithm.synthesizers import Synthesizer |
|
from main.library.algorithm.commons import get_padding, slice_segments, clip_grad_value |
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
logging.getLogger("torch").setLevel(logging.ERROR) |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
translations = Config().translations |
|
|
|
class HParams: |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
self[k] = HParams(**v) if isinstance(v, dict) else v |
|
|
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
|
|
def __getitem__(self, key): |
|
return self.__dict__[key] |
|
|
|
|
|
def __setitem__(self, key, value): |
|
self.__dict__[key] = value |
|
|
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
|
|
def __repr__(self): |
|
return repr(self.__dict__) |
|
|
|
def parse_arguments() -> tuple: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_name", type=str, required=True) |
|
parser.add_argument("--rvc_version", type=str, default="v2") |
|
parser.add_argument("--save_every_epoch", type=int, required=True) |
|
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True) |
|
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True) |
|
parser.add_argument("--total_epoch", type=int, default=300) |
|
parser.add_argument("--sample_rate", type=int, required=True) |
|
parser.add_argument("--batch_size", type=int, default=8) |
|
parser.add_argument("--gpu", type=str, default="0") |
|
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True) |
|
parser.add_argument("--g_pretrained_path", type=str, default="") |
|
parser.add_argument("--d_pretrained_path", type=str, default="") |
|
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False) |
|
parser.add_argument("--overtraining_threshold", type=int, default=50) |
|
parser.add_argument("--sync_graph", type=lambda x: bool(strtobool(x)), default=False) |
|
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False) |
|
parser.add_argument("--model_author", type=str) |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
args = parse_arguments() |
|
|
|
model_name = args.model_name |
|
save_every_epoch = args.save_every_epoch |
|
total_epoch = args.total_epoch |
|
pretrainG = args.g_pretrained_path |
|
pretrainD = args.d_pretrained_path |
|
version = args.rvc_version |
|
gpus = args.gpu |
|
batch_size = args.batch_size |
|
sample_rate = args.sample_rate |
|
pitch_guidance = args.pitch_guidance |
|
save_only_latest = args.save_only_latest |
|
save_every_weights = args.save_every_weights |
|
cache_data_in_gpu = args.cache_data_in_gpu |
|
overtraining_detector = args.overtraining_detector |
|
overtraining_threshold = args.overtraining_threshold |
|
sync_graph = args.sync_graph |
|
model_author = args.model_author |
|
|
|
experiment_dir = os.path.join(current_dir, "assets", "logs", model_name) |
|
config_save_path = os.path.join(experiment_dir, "config.json") |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",") |
|
n_gpus = len(gpus.split("-")) |
|
|
|
torch.backends.cudnn.deterministic = False |
|
torch.backends.cudnn.benchmark = False |
|
|
|
global_step = 0 |
|
last_loss_gen_all = 0 |
|
overtrain_save_epoch = 0 |
|
|
|
loss_gen_history = [] |
|
smoothed_loss_gen_history = [] |
|
loss_disc_history = [] |
|
smoothed_loss_disc_history = [] |
|
|
|
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} |
|
training_file_path = os.path.join(experiment_dir, "training_data.json") |
|
|
|
with open(config_save_path, "r") as f: |
|
config = json.load(f) |
|
|
|
config = HParams(**config) |
|
config.data.training_files = os.path.join(experiment_dir, "filelist.txt") |
|
|
|
log_file = os.path.join(experiment_dir, "train.log") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
if logger.hasHandlers(): logger.handlers.clear() |
|
else: |
|
console_handler = logging.StreamHandler() |
|
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") |
|
|
|
console_handler.setFormatter(console_formatter) |
|
console_handler.setLevel(logging.INFO) |
|
|
|
file_handler = logging.handlers.RotatingFileHandler(log_file, maxBytes=5*1024*1024, backupCount=3, encoding='utf-8') |
|
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") |
|
|
|
file_handler.setFormatter(file_formatter) |
|
file_handler.setLevel(logging.DEBUG) |
|
|
|
logger.addHandler(console_handler) |
|
logger.addHandler(file_handler) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
logger.debug(f"{translations['modelname']}: {model_name}") |
|
logger.debug(translations["save_every_epoch"].format(save_every_epoch=save_every_epoch)) |
|
logger.debug(translations["total_e"].format(total_epoch=total_epoch)) |
|
logger.debug(translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD)) |
|
logger.debug(f"{translations['training_version']}: {version}") |
|
logger.debug(f"Gpu: {gpus}") |
|
logger.debug(f"{translations['batch_size']}: {batch_size}") |
|
logger.debug(f"{translations['pretrain_sr']}: {sample_rate}") |
|
logger.debug(f"{translations['training_f0']}: {pitch_guidance}") |
|
logger.debug(f"{translations['save_only_latest']}: {save_only_latest}") |
|
logger.debug(f"{translations['save_every_weights']}: {save_every_weights}") |
|
logger.debug(f"{translations['cache_in_gpu']}: {cache_data_in_gpu}") |
|
logger.debug(f"{translations['overtraining_detector']}: {overtraining_detector}") |
|
logger.debug(f"{translations['threshold']}: {overtraining_threshold}") |
|
logger.debug(f"{translations['sync_graph']}: {sync_graph}") |
|
if not model_author: logger.debug(translations["model_author"].format(model_author=model_author)) |
|
|
|
def main(): |
|
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author |
|
os.environ["MASTER_ADDR"] = "localhost" |
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
n_gpus = torch.cuda.device_count() |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device("mps") |
|
n_gpus = 1 |
|
else: |
|
device = torch.device("cpu") |
|
n_gpus = 1 |
|
|
|
def start(): |
|
children = [] |
|
|
|
for i in range(n_gpus): |
|
subproc = mp.Process(target=run, args=(i, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author)) |
|
children.append(subproc) |
|
subproc.start() |
|
|
|
for i in range(n_gpus): |
|
children[i].join() |
|
|
|
def load_from_json(file_path): |
|
if os.path.exists(file_path): |
|
with open(file_path, "r") as f: |
|
data = json.load(f) |
|
|
|
return ( |
|
data.get("loss_disc_history", []), |
|
data.get("smoothed_loss_disc_history", []), |
|
data.get("loss_gen_history", []), |
|
data.get("smoothed_loss_gen_history", []), |
|
) |
|
|
|
return [], [], [], [] |
|
|
|
def continue_overtrain_detector(training_file_path): |
|
if overtraining_detector: |
|
if os.path.exists(training_file_path): |
|
( |
|
loss_disc_history, |
|
smoothed_loss_disc_history, |
|
loss_gen_history, |
|
smoothed_loss_gen_history, |
|
) = load_from_json(training_file_path) |
|
|
|
|
|
n_gpus = torch.cuda.device_count() |
|
|
|
if not torch.cuda.is_available() and torch.backends.mps.is_available(): n_gpus = 1 |
|
|
|
if n_gpus < 1: |
|
logger.warning(translations["not_gpu"]) |
|
n_gpus = 1 |
|
|
|
if sync_graph: |
|
logger.debug(translations["sync"]) |
|
custom_total_epoch = 1 |
|
custom_save_every_weights = True |
|
|
|
start() |
|
|
|
model_config_file = os.path.join(experiment_dir, "config.json") |
|
rvc_config_file = os.path.join(current_dir, "main", "configs", version, str(sample_rate) + ".json") |
|
|
|
if not os.path.exists(rvc_config_file): rvc_config_file = os.path.join(current_dir, "main", "configs", "v1", str(sample_rate) + ".json") |
|
|
|
pattern = rf"{os.path.basename(model_name)}_(\d+)e_(\d+)s\.pth" |
|
|
|
for filename in os.listdir(os.path.join("assets", "weights")): |
|
match = re.match(pattern, filename) |
|
|
|
if match: steps = int(match.group(2)) |
|
|
|
def edit_config(config_file): |
|
with open(config_file, "r", encoding="utf8") as json_file: |
|
config_data = json.load(json_file) |
|
|
|
config_data["train"]["log_interval"] = steps |
|
|
|
with open(config_file, "w", encoding="utf8") as json_file: |
|
json.dump(config_data, json_file, indent=2, separators=(",", ": "), ensure_ascii=False) |
|
|
|
edit_config(model_config_file) |
|
edit_config(rvc_config_file) |
|
|
|
for root, dirs, files in os.walk(experiment_dir, topdown=False): |
|
for name in files: |
|
file_path = os.path.join(root, name) |
|
_, file_extension = os.path.splitext(name) |
|
|
|
if file_extension == ".0": os.remove(file_path) |
|
elif ("D" in name or "G" in name) and file_extension == ".pth": os.remove(file_path) |
|
elif ("added" in name or "trained" in name) and file_extension == ".index": os.remove(file_path) |
|
|
|
for name in dirs: |
|
if name == "eval": |
|
folder_path = os.path.join(root, name) |
|
|
|
for item in os.listdir(folder_path): |
|
item_path = os.path.join(folder_path, item) |
|
if os.path.isfile(item_path): os.remove(item_path) |
|
|
|
os.rmdir(folder_path) |
|
|
|
logger.info(translations["sync_success"]) |
|
custom_total_epoch = total_epoch |
|
custom_save_every_weights = save_every_weights |
|
|
|
continue_overtrain_detector(training_file_path) |
|
start() |
|
else: |
|
custom_total_epoch = total_epoch |
|
custom_save_every_weights = save_every_weights |
|
|
|
continue_overtrain_detector(training_file_path) |
|
start() |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
global MATPLOTLIB_FLAG |
|
|
|
if not MATPLOTLIB_FLAG: |
|
plt.switch_backend("Agg") |
|
MATPLOTLIB_FLAG = True |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") |
|
|
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close(fig) |
|
return data |
|
|
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sample_rate=22050): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
|
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
|
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats="HWC") |
|
|
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sample_rate) |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): |
|
assert os.path.isfile(checkpoint_path), translations["not_found_checkpoint"].format(checkpoint_path=checkpoint_path) |
|
|
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") |
|
checkpoint_dict = replace_keys_in_dict(replace_keys_in_dict(checkpoint_dict, ".weight_v", ".parametrizations.weight.original1"), ".weight_g", ".parametrizations.weight.original0") |
|
|
|
model_state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict()) |
|
new_state_dict = {k: checkpoint_dict["model"].get(k, v) for k, v in model_state_dict.items()} |
|
|
|
if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False) |
|
else: model.load_state_dict(new_state_dict, strict=False) |
|
|
|
if optimizer and load_opt == 1: optimizer.load_state_dict(checkpoint_dict.get("optimizer", {})) |
|
|
|
logger.debug(translations["save_checkpoint"].format(checkpoint_path=checkpoint_path, checkpoint_dict=checkpoint_dict['iteration'])) |
|
|
|
return ( |
|
model, |
|
optimizer, |
|
checkpoint_dict.get("learning_rate", 0), |
|
checkpoint_dict["iteration"], |
|
) |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): |
|
state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict()) |
|
|
|
checkpoint_data = { |
|
"model": state_dict, |
|
"iteration": iteration, |
|
"optimizer": optimizer.state_dict(), |
|
"learning_rate": learning_rate, |
|
} |
|
|
|
torch.save(checkpoint_data, checkpoint_path) |
|
|
|
old_version_path = checkpoint_path.replace(".pth", "_old_version.pth") |
|
checkpoint_data = replace_keys_in_dict(replace_keys_in_dict(checkpoint_data, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g") |
|
|
|
torch.save(checkpoint_data, old_version_path) |
|
|
|
os.replace(old_version_path, checkpoint_path) |
|
logger.info(translations["save_model"].format(checkpoint_path=checkpoint_path, iteration=iteration)) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
checkpoints = sorted(glob.glob(os.path.join(dir_path, regex)), key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
|
|
return checkpoints[-1] if checkpoints else None |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sample_rate, data = read(full_path) |
|
|
|
return torch.FloatTensor(data.astype(np.float32)), sample_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding="utf-8") as f: |
|
return [line.strip().split(split) for line in f] |
|
|
|
|
|
def feature_loss(fmap_r, fmap_g): |
|
loss = 0 |
|
|
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
rl = rl.float().detach() |
|
gl = gl.float() |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss * 2 |
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs): |
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
dr = dr.float() |
|
dg = dg.float() |
|
r_loss = torch.mean((1 - dr) ** 2) |
|
g_loss = torch.mean(dg**2) |
|
loss += r_loss + g_loss |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
|
|
def generator_loss(disc_outputs): |
|
loss = 0 |
|
gen_losses = [] |
|
|
|
for dg in disc_outputs: |
|
dg = dg.float() |
|
l = torch.mean((1 - dg) ** 2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |
|
|
|
|
|
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): |
|
z_p = z_p.float() |
|
logs_q = logs_q.float() |
|
m_p = m_p.float() |
|
logs_p = logs_p.float() |
|
z_mask = z_mask.float() |
|
|
|
kl = logs_p - logs_q - 0.5 |
|
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) |
|
kl = torch.sum(kl * z_mask) |
|
l = kl / torch.sum(z_mask) |
|
|
|
return l |
|
|
|
|
|
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset): |
|
def __init__(self, hparams): |
|
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sample_rate = hparams.sample_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sample_rate = hparams.sample_rate |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 5000) |
|
self._filter() |
|
|
|
def _filter(self): |
|
audiopaths_and_text_new = [] |
|
lengths = [] |
|
|
|
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text: |
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: |
|
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv]) |
|
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) |
|
|
|
self.audiopaths_and_text = audiopaths_and_text_new |
|
self.lengths = lengths |
|
|
|
def get_sid(self, sid): |
|
try: |
|
sid = torch.LongTensor([int(sid)]) |
|
except ValueError as e: |
|
logger.error(translations["sid_error"].format(sid=sid, e=e)) |
|
sid = torch.LongTensor([0]) |
|
|
|
return sid |
|
|
|
def get_audio_text_pair(self, audiopath_and_text): |
|
file = audiopath_and_text[0] |
|
phone = audiopath_and_text[1] |
|
pitch = audiopath_and_text[2] |
|
pitchf = audiopath_and_text[3] |
|
dv = audiopath_and_text[4] |
|
|
|
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf) |
|
spec, wav = self.get_audio(file) |
|
dv = self.get_sid(dv) |
|
|
|
len_phone = phone.size()[0] |
|
len_spec = spec.size()[-1] |
|
if len_phone != len_spec: |
|
len_min = min(len_phone, len_spec) |
|
len_wav = len_min * self.hop_length |
|
|
|
spec = spec[:, :len_min] |
|
wav = wav[:, :len_wav] |
|
|
|
phone = phone[:len_min, :] |
|
pitch = pitch[:len_min] |
|
pitchf = pitchf[:len_min] |
|
|
|
return (spec, wav, phone, pitch, pitchf, dv) |
|
|
|
def get_labels(self, phone, pitch, pitchf): |
|
phone = np.load(phone) |
|
phone = np.repeat(phone, 2, axis=0) |
|
|
|
pitch = np.load(pitch) |
|
pitchf = np.load(pitchf) |
|
|
|
n_num = min(phone.shape[0], 900) |
|
phone = phone[:n_num, :] |
|
|
|
pitch = pitch[:n_num] |
|
pitchf = pitchf[:n_num] |
|
|
|
phone = torch.FloatTensor(phone) |
|
|
|
pitch = torch.LongTensor(pitch) |
|
pitchf = torch.FloatTensor(pitchf) |
|
|
|
return phone, pitch, pitchf |
|
|
|
def get_audio(self, filename): |
|
audio, sample_rate = load_wav_to_torch(filename) |
|
|
|
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) |
|
|
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
|
|
if os.path.exists(spec_filename): |
|
try: |
|
spec = torch.load(spec_filename) |
|
except Exception as e: |
|
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e)) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
else: |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
return spec, audio_norm |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_pair(self.audiopaths_and_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_and_text) |
|
|
|
|
|
class TextAudioCollateMultiNSFsid: |
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) |
|
|
|
max_spec_len = max([x[0].size(1) for x in batch]) |
|
max_wave_len = max([x[1].size(1) for x in batch]) |
|
|
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wave_lengths = torch.LongTensor(len(batch)) |
|
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) |
|
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) |
|
|
|
spec_padded.zero_() |
|
wave_padded.zero_() |
|
|
|
max_phone_len = max([x[2].size(0) for x in batch]) |
|
|
|
phone_lengths = torch.LongTensor(len(batch)) |
|
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) |
|
pitch_padded = torch.LongTensor(len(batch), max_phone_len) |
|
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len) |
|
|
|
phone_padded.zero_() |
|
pitch_padded.zero_() |
|
pitchf_padded.zero_() |
|
sid = torch.LongTensor(len(batch)) |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
spec = row[0] |
|
spec_padded[i, :, : spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wave = row[1] |
|
wave_padded[i, :, : wave.size(1)] = wave |
|
wave_lengths[i] = wave.size(1) |
|
|
|
phone = row[2] |
|
phone_padded[i, : phone.size(0), :] = phone |
|
phone_lengths[i] = phone.size(0) |
|
|
|
pitch = row[3] |
|
pitch_padded[i, : pitch.size(0)] = pitch |
|
pitchf = row[4] |
|
pitchf_padded[i, : pitchf.size(0)] = pitchf |
|
|
|
sid[i] = row[5] |
|
|
|
return ( |
|
phone_padded, |
|
phone_lengths, |
|
pitch_padded, |
|
pitchf_padded, |
|
spec_padded, |
|
spec_lengths, |
|
wave_padded, |
|
wave_lengths, |
|
sid, |
|
) |
|
|
|
|
|
class TextAudioLoader(torch.utils.data.Dataset): |
|
def __init__(self, hparams): |
|
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) |
|
self.max_wav_value = hparams.max_wav_value |
|
self.sample_rate = hparams.sample_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sample_rate = hparams.sample_rate |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 5000) |
|
self._filter() |
|
|
|
def _filter(self): |
|
audiopaths_and_text_new = [] |
|
lengths = [] |
|
|
|
for entry in self.audiopaths_and_text: |
|
if len(entry) >= 3: |
|
audiopath, text, dv = entry[:3] |
|
|
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: |
|
audiopaths_and_text_new.append([audiopath, text, dv]) |
|
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) |
|
|
|
self.audiopaths_and_text = audiopaths_and_text_new |
|
self.lengths = lengths |
|
|
|
def get_sid(self, sid): |
|
try: |
|
sid = torch.LongTensor([int(sid)]) |
|
except ValueError as e: |
|
logger.error(translations["sid_error"].format(sid=sid, e=e)) |
|
sid = torch.LongTensor([0]) |
|
|
|
return sid |
|
|
|
def get_audio_text_pair(self, audiopath_and_text): |
|
file = audiopath_and_text[0] |
|
phone = audiopath_and_text[1] |
|
dv = audiopath_and_text[2] |
|
|
|
phone = self.get_labels(phone) |
|
spec, wav = self.get_audio(file) |
|
dv = self.get_sid(dv) |
|
|
|
len_phone = phone.size()[0] |
|
len_spec = spec.size()[-1] |
|
|
|
if len_phone != len_spec: |
|
len_min = min(len_phone, len_spec) |
|
len_wav = len_min * self.hop_length |
|
spec = spec[:, :len_min] |
|
wav = wav[:, :len_wav] |
|
phone = phone[:len_min, :] |
|
|
|
return (spec, wav, phone, dv) |
|
|
|
def get_labels(self, phone): |
|
phone = np.load(phone) |
|
phone = np.repeat(phone, 2, axis=0) |
|
n_num = min(phone.shape[0], 900) |
|
phone = phone[:n_num, :] |
|
phone = torch.FloatTensor(phone) |
|
return phone |
|
|
|
def get_audio(self, filename): |
|
audio, sample_rate = load_wav_to_torch(filename) |
|
|
|
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) |
|
|
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
|
|
spec_filename = filename.replace(".wav", ".spec.pt") |
|
|
|
if os.path.exists(spec_filename): |
|
try: |
|
spec = torch.load(spec_filename) |
|
except Exception as e: |
|
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e)) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
else: |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
self.filter_length, |
|
self.hop_length, |
|
self.win_length, |
|
center=False, |
|
) |
|
spec = torch.squeeze(spec, 0) |
|
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) |
|
return spec, audio_norm |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_pair(self.audiopaths_and_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_and_text) |
|
|
|
|
|
class TextAudioCollate: |
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) |
|
|
|
max_spec_len = max([x[0].size(1) for x in batch]) |
|
max_wave_len = max([x[1].size(1) for x in batch]) |
|
|
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wave_lengths = torch.LongTensor(len(batch)) |
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) |
|
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) |
|
|
|
spec_padded.zero_() |
|
wave_padded.zero_() |
|
|
|
max_phone_len = max([x[2].size(0) for x in batch]) |
|
|
|
phone_lengths = torch.LongTensor(len(batch)) |
|
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) |
|
|
|
phone_padded.zero_() |
|
sid = torch.LongTensor(len(batch)) |
|
|
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
spec = row[0] |
|
spec_padded[i, :, : spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wave = row[1] |
|
wave_padded[i, :, : wave.size(1)] = wave |
|
wave_lengths[i] = wave.size(1) |
|
|
|
phone = row[2] |
|
phone_padded[i, : phone.size(0), :] = phone |
|
phone_lengths[i] = phone.size(0) |
|
|
|
sid[i] = row[3] |
|
|
|
return ( |
|
phone_padded, |
|
phone_lengths, |
|
spec_padded, |
|
spec_lengths, |
|
wave_padded, |
|
wave_lengths, |
|
sid, |
|
) |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): |
|
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): |
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
|
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: buckets[idx_bucket].append(i) |
|
|
|
for i in range(len(buckets) - 1, -1, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
|
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
|
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
|
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append(torch.randperm(len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
|
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
rem = num_samples_bucket - len_bucket |
|
|
|
ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)]) |
|
ids_bucket = ids_bucket[self.rank :: self.num_replicas] |
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
|
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
|
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid |
|
elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) |
|
else: return self._bisect(x, mid + 1, hi) |
|
|
|
else: return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
periods = [2, 3, 5, 7, 11, 17] |
|
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_rs.append(fmap_r) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class MultiPeriodDiscriminatorV2(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(MultiPeriodDiscriminatorV2, self).__init__() |
|
periods = [2, 3, 5, 7, 11, 17, 23, 37] |
|
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods]) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_rs.append(fmap_r) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = spectral_norm if use_spectral_norm else weight_norm |
|
|
|
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2))]) |
|
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) |
|
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
for conv in self.convs: |
|
x = self.lrelu(conv(x)) |
|
fmap.append(x) |
|
|
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
norm_f = spectral_norm if use_spectral_norm else weight_norm |
|
|
|
in_channels = [1, 32, 128, 512, 1024] |
|
out_channels = [32, 128, 512, 1024, 1024] |
|
|
|
self.convs = torch.nn.ModuleList( |
|
[ |
|
norm_f( |
|
torch.nn.Conv2d( |
|
in_ch, |
|
out_ch, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
) |
|
for in_ch, out_ch in zip(in_channels, out_channels) |
|
] |
|
) |
|
|
|
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
b, c, t = x.shape |
|
|
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = torch.nn.functional.pad(x, (0, n_pad), "reflect") |
|
|
|
x = x.view(b, c, -1, self.period) |
|
|
|
for conv in self.convs: |
|
x = self.lrelu(conv(x)) |
|
fmap.append(x) |
|
|
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
return x, fmap |
|
|
|
|
|
class EpochRecorder: |
|
def __init__(self): |
|
self.last_time = ttime() |
|
|
|
def record(self): |
|
now_time = ttime() |
|
elapsed_time = now_time - self.last_time |
|
self.last_time = now_time |
|
elapsed_time = round(elapsed_time, 1) |
|
elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time))) |
|
current_time = datetime.datetime.now().strftime("%H:%M:%S") |
|
return translations["time_or_speed_training"].format(current_time=current_time, elapsed_time_str=elapsed_time_str) |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
return torch.exp(x) / C |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
return dynamic_range_compression_torch(magnitudes) |
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes): |
|
return dynamic_range_decompression_torch(magnitudes) |
|
|
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
|
|
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False): |
|
global hann_window |
|
dtype_device = str(y.dtype) + "_" + str(y.device) |
|
wnsize_dtype_device = str(win_size) + "_" + dtype_device |
|
if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) |
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect") |
|
|
|
y = y.squeeze(1) |
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True) |
|
|
|
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6) |
|
return spec |
|
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax): |
|
global mel_basis |
|
dtype_device = str(spec.dtype) + "_" + str(spec.device) |
|
fmax_dtype_device = str(fmax) + "_" + dtype_device |
|
|
|
if fmax_dtype_device not in mel_basis: |
|
mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) |
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) |
|
|
|
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) |
|
melspec = spectral_normalize_torch(melspec) |
|
return melspec |
|
|
|
|
|
def mel_spectrogram_torch(y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False): |
|
spec = spectrogram_torch(y, n_fft, hop_size, win_size, center) |
|
|
|
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax) |
|
|
|
return melspec |
|
|
|
|
|
def replace_keys_in_dict(d, old_key_part, new_key_part): |
|
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {} |
|
|
|
for key, value in d.items(): |
|
new_key = (key.replace(old_key_part, new_key_part) if isinstance(key, str) else key) |
|
updated_dict[new_key] = (replace_keys_in_dict(value, old_key_part, new_key_part) if isinstance(value, dict) else value) |
|
|
|
return updated_dict |
|
|
|
|
|
def extract_model(ckpt, sr, pitch_guidance, name, model_dir, epoch, step, version, hps, model_author): |
|
try: |
|
logger.info(translations["savemodel"].format(model_dir=model_dir, epoch=epoch, step=step)) |
|
|
|
model_dir_path = os.path.join("assets", "weights") |
|
|
|
if "best_epoch" in model_dir: pth_file = f"{name}_{epoch}e_{step}s_best_epoch.pth" |
|
else: pth_file = f"{name}_{epoch}e_{step}s.pth" |
|
|
|
pth_file_old_version_path = os.path.join(model_dir_path, f"{pth_file}_old_version.pth") |
|
|
|
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key}) |
|
|
|
opt["config"] = [ |
|
hps.data.filter_length // 2 + 1, |
|
32, |
|
hps.model.inter_channels, |
|
hps.model.hidden_channels, |
|
hps.model.filter_channels, |
|
hps.model.n_heads, |
|
hps.model.n_layers, |
|
hps.model.kernel_size, |
|
hps.model.p_dropout, |
|
hps.model.resblock, |
|
hps.model.resblock_kernel_sizes, |
|
hps.model.resblock_dilation_sizes, |
|
hps.model.upsample_rates, |
|
hps.model.upsample_initial_channel, |
|
hps.model.upsample_kernel_sizes, |
|
hps.model.spk_embed_dim, |
|
hps.model.gin_channels, |
|
hps.data.sample_rate, |
|
] |
|
|
|
opt["epoch"] = f"{epoch}epoch" |
|
opt["step"] = step |
|
opt["sr"] = sr |
|
opt["f0"] = int(pitch_guidance) |
|
opt["version"] = version |
|
opt["creation_date"] = datetime.datetime.now().isoformat() |
|
|
|
hash_input = f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}" |
|
model_hash = hashlib.sha256(hash_input.encode()).hexdigest() |
|
opt["model_hash"] = model_hash |
|
opt["model_name"] = name |
|
opt["author"] = model_author |
|
|
|
torch.save(opt, os.path.join(model_dir_path, pth_file)) |
|
|
|
model = torch.load(model_dir, map_location=torch.device("cpu")) |
|
torch.save(replace_keys_in_dict(replace_keys_in_dict(model, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), pth_file_old_version_path) |
|
|
|
os.remove(model_dir) |
|
os.rename(pth_file_old_version_path, model_dir) |
|
|
|
except Exception as e: |
|
logger.error(f"{translations['extract_model_error']}: {e}") |
|
|
|
|
|
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author): |
|
global global_step |
|
|
|
if rank == 0: |
|
writer = SummaryWriter(log_dir=experiment_dir) |
|
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval")) |
|
|
|
dist.init_process_group(backend="gloo", init_method="env://", world_size=n_gpus, rank=rank) |
|
torch.manual_seed(config.train.seed) |
|
|
|
if torch.cuda.is_available(): torch.cuda.set_device(rank) |
|
|
|
train_dataset = TextAudioLoaderMultiNSFsid(config.data) |
|
|
|
train_sampler = DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True) |
|
|
|
collate_fn = TextAudioCollateMultiNSFsid() |
|
|
|
train_loader = DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler, persistent_workers=True, prefetch_factor=8) |
|
|
|
net_g = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance == True, is_half=config.train.fp16_run and device.type == "cuda", sr=sample_rate).to(device) |
|
|
|
if torch.cuda.is_available(): net_g = net_g.cuda(rank) |
|
|
|
if version == "v1": net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm) |
|
else: net_d = MultiPeriodDiscriminatorV2(config.model.use_spectral_norm) |
|
|
|
if torch.cuda.is_available(): net_d = net_d.cuda(rank) |
|
|
|
optim_g = torch.optim.AdamW(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps) |
|
optim_d = torch.optim.AdamW(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps) |
|
|
|
if torch.cuda.is_available(): |
|
net_g = DDP(net_g, device_ids=[rank]) |
|
net_d = DDP(net_d, device_ids=[rank]) |
|
else: |
|
net_g = DDP(net_g) |
|
net_d = DDP(net_d) |
|
|
|
try: |
|
logger.info(translations["start_training"]) |
|
|
|
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(experiment_dir, "D_*.pth"), net_d, optim_d) |
|
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(experiment_dir, "G_*.pth"), net_g, optim_g) |
|
|
|
epoch_str += 1 |
|
global_step = (epoch_str - 1) * len(train_loader) |
|
|
|
except: |
|
epoch_str = 1 |
|
global_step = 0 |
|
|
|
if pretrainG != "": |
|
if rank == 0: logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG)) |
|
|
|
if hasattr(net_g, "module"): net_g.module.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"]) |
|
else: net_g.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"]) |
|
else: logger.warning(translations["not_using_pretrain"].format(dg="G")) |
|
|
|
if pretrainD != "": |
|
if rank == 0: logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD)) |
|
|
|
if hasattr(net_d, "module"): net_d.module.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"]) |
|
else: net_d.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"]) |
|
else: logger.warning(translations["not_using_pretrain"].format(dg="D")) |
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2) |
|
|
|
optim_d.step() |
|
optim_g.step() |
|
|
|
scaler = GradScaler(enabled=config.train.fp16_run) |
|
|
|
cache = [] |
|
|
|
for info in train_loader: |
|
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info |
|
reference = ( |
|
phone.to(device), |
|
phone_lengths.to(device), |
|
pitch.to(device) if pitch_guidance else None, |
|
pitchf.to(device) if pitch_guidance else None, |
|
sid.to(device), |
|
) |
|
break |
|
|
|
for epoch in range(epoch_str, total_epoch + 1): |
|
if rank == 0: train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, [train_loader, None], [writer, writer_eval], cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author) |
|
else: train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, [train_loader, None], None, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author) |
|
|
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
|
|
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, loaders, writers, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author): |
|
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc |
|
|
|
if epoch == 1: |
|
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} |
|
last_loss_gen_all = 0.0 |
|
consecutive_increases_gen = 0 |
|
consecutive_increases_disc = 0 |
|
|
|
net_g, net_d = nets |
|
optim_g, optim_d = optims |
|
train_loader = loaders[0] if loaders is not None else None |
|
|
|
if writers is not None: writer = writers[0] |
|
|
|
train_loader.batch_sampler.set_epoch(epoch) |
|
|
|
net_g.train() |
|
net_d.train() |
|
|
|
if device.type == "cuda" and cache_data_in_gpu: |
|
data_iterator = cache |
|
|
|
if cache == []: |
|
for batch_idx, info in enumerate(train_loader): |
|
( |
|
phone, |
|
phone_lengths, |
|
pitch, |
|
pitchf, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
) = info |
|
cache.append( |
|
(batch_idx, ( |
|
phone.cuda(rank, non_blocking=True), |
|
phone_lengths.cuda(rank, non_blocking=True), |
|
(pitch.cuda(rank, non_blocking=True) if pitch_guidance else None), |
|
(pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None), |
|
spec.cuda(rank, non_blocking=True), |
|
spec_lengths.cuda(rank, non_blocking=True), |
|
wave.cuda(rank, non_blocking=True), |
|
wave_lengths.cuda(rank, non_blocking=True), |
|
sid.cuda(rank, non_blocking=True), |
|
), |
|
)) |
|
else: shuffle(cache) |
|
else: data_iterator = enumerate(train_loader) |
|
|
|
epoch_recorder = EpochRecorder() |
|
|
|
with tqdm(total=len(train_loader), leave=False) as pbar: |
|
for batch_idx, info in data_iterator: |
|
( |
|
phone, |
|
phone_lengths, |
|
pitch, |
|
pitchf, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
) = info |
|
if device.type == "cuda" and not cache_data_in_gpu: |
|
phone = phone.cuda(rank, non_blocking=True) |
|
phone_lengths = phone_lengths.cuda(rank, non_blocking=True) |
|
pitch = pitch.cuda(rank, non_blocking=True) if pitch_guidance else None |
|
pitchf = (pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None) |
|
sid = sid.cuda(rank, non_blocking=True) |
|
spec = spec.cuda(rank, non_blocking=True) |
|
spec_lengths = spec_lengths.cuda(rank, non_blocking=True) |
|
wave = wave.cuda(rank, non_blocking=True) |
|
wave_lengths = wave_lengths.cuda(rank, non_blocking=True) |
|
else: |
|
phone = phone.to(device) |
|
phone_lengths = phone_lengths.to(device) |
|
pitch = pitch.to(device) if pitch_guidance else None |
|
pitchf = pitchf.to(device) if pitch_guidance else None |
|
sid = sid.to(device) |
|
spec = spec.to(device) |
|
spec_lengths = spec_lengths.to(device) |
|
wave = wave.to(device) |
|
wave_lengths = wave_lengths.to(device) |
|
|
|
use_amp = config.train.fp16_run and device.type == "cuda" |
|
|
|
with autocast(enabled=use_amp): |
|
( |
|
y_hat, |
|
ids_slice, |
|
x_mask, |
|
z_mask, |
|
(z, z_p, m_p, logs_p, m_q, logs_q), |
|
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid) |
|
mel = spec_to_mel_torch( |
|
spec, |
|
config.data.filter_length, |
|
config.data.n_mel_channels, |
|
config.data.sample_rate, |
|
config.data.mel_fmin, |
|
config.data.mel_fmax, |
|
) |
|
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3) |
|
with autocast(enabled=False): |
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.float().squeeze(1), |
|
config.data.filter_length, |
|
config.data.n_mel_channels, |
|
config.data.sample_rate, |
|
config.data.hop_length, |
|
config.data.win_length, |
|
config.data.mel_fmin, |
|
config.data.mel_fmax, |
|
) |
|
if use_amp: y_hat_mel = y_hat_mel.half() |
|
|
|
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3) |
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach()) |
|
|
|
with autocast(enabled=False): |
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) |
|
|
|
optim_d.zero_grad() |
|
scaler.scale(loss_disc).backward() |
|
scaler.unscale_(optim_d) |
|
grad_norm_d = clip_grad_value(net_d.parameters(), None) |
|
scaler.step(optim_d) |
|
|
|
with autocast(enabled=use_amp): |
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat) |
|
with autocast(enabled=False): |
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel |
|
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl) |
|
loss_fm = feature_loss(fmap_r, fmap_g) |
|
loss_gen, losses_gen = generator_loss(y_d_hat_g) |
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl |
|
|
|
if loss_gen_all < lowest_value["value"]: |
|
lowest_value["value"] = loss_gen_all |
|
lowest_value["step"] = global_step |
|
lowest_value["epoch"] = epoch |
|
|
|
if epoch > lowest_value["epoch"]: logger.warning(translations["training_warning"]) |
|
|
|
optim_g.zero_grad() |
|
scaler.scale(loss_gen_all).backward() |
|
scaler.unscale_(optim_g) |
|
grad_norm_g = clip_grad_value(net_g.parameters(), None) |
|
scaler.step(optim_g) |
|
scaler.update() |
|
|
|
if rank == 0: |
|
if global_step % config.train.log_interval == 0: |
|
lr = optim_g.param_groups[0]["lr"] |
|
|
|
if loss_mel > 75: loss_mel = 75 |
|
if loss_kl > 9: loss_kl = 9 |
|
|
|
scalar_dict = { |
|
"loss/g/total": loss_gen_all, |
|
"loss/d/total": loss_disc, |
|
"learning_rate": lr, |
|
"grad_norm_d": grad_norm_d, |
|
"grad_norm_g": grad_norm_g, |
|
} |
|
scalar_dict.update( |
|
{ |
|
"loss/g/fm": loss_fm, |
|
"loss/g/mel": loss_mel, |
|
"loss/g/kl": loss_kl, |
|
} |
|
) |
|
scalar_dict.update( |
|
{f"loss/g/{i}": v for i, v in enumerate(losses_gen)} |
|
) |
|
scalar_dict.update( |
|
{f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)} |
|
) |
|
scalar_dict.update( |
|
{f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)} |
|
) |
|
image_dict = { |
|
"slice/mel_org": plot_spectrogram_to_numpy( |
|
y_mel[0].data.cpu().numpy() |
|
), |
|
"slice/mel_gen": plot_spectrogram_to_numpy( |
|
y_hat_mel[0].data.cpu().numpy() |
|
), |
|
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), |
|
} |
|
|
|
with torch.no_grad(): |
|
if hasattr(net_g, "module"): o, *_ = net_g.module.infer(*reference) |
|
else: o, *_ = net_g.infer(*reference) |
|
|
|
|
|
audio_dict = {f"gen/audio_{global_step:07d}": o[0, :, :]} |
|
|
|
summarize( |
|
writer=writer, |
|
global_step=global_step, |
|
images=image_dict, |
|
scalars=scalar_dict, |
|
audios=audio_dict, |
|
audio_sample_rate=config.data.sample_rate, |
|
) |
|
|
|
global_step += 1 |
|
pbar.update(1) |
|
|
|
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004): |
|
if len(smoothed_loss_history) < threshold + 1: return False |
|
|
|
for i in range(-threshold, -1): |
|
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True |
|
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False |
|
|
|
return True |
|
|
|
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987): |
|
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value) |
|
smoothed_loss_history.append(smoothed_value) |
|
return smoothed_value |
|
|
|
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history): |
|
data = { |
|
"loss_disc_history": loss_disc_history, |
|
"smoothed_loss_disc_history": smoothed_loss_disc_history, |
|
"loss_gen_history": loss_gen_history, |
|
"smoothed_loss_gen_history": smoothed_loss_gen_history, |
|
} |
|
|
|
with open(file_path, "w") as f: |
|
json.dump(data, f) |
|
|
|
model_add = [] |
|
model_del = [] |
|
done = False |
|
|
|
if rank == 0: |
|
if epoch % save_every_epoch == False: |
|
checkpoint_suffix = f"{2333333 if save_only_latest else global_step}.pth" |
|
|
|
save_checkpoint(net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix)) |
|
save_checkpoint(net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix)) |
|
|
|
if custom_save_every_weights: model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth")) |
|
|
|
if overtraining_detector and epoch > 1: |
|
current_loss_disc = float(loss_disc) |
|
loss_disc_history.append(current_loss_disc) |
|
|
|
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc) |
|
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2) |
|
|
|
if is_overtraining_disc: consecutive_increases_disc += 1 |
|
else: consecutive_increases_disc = 0 |
|
|
|
current_loss_gen = float(lowest_value["value"]) |
|
loss_gen_history.append(current_loss_gen) |
|
|
|
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen) |
|
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01) |
|
|
|
if is_overtraining_gen: consecutive_increases_gen += 1 |
|
else: consecutive_increases_gen = 0 |
|
|
|
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) |
|
|
|
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)): |
|
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) |
|
done = True |
|
else: |
|
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) |
|
|
|
old_model_files = glob.glob(os.path.join("assets", "weights", f"{model_name}_*e_*s_best_epoch.pth")) |
|
|
|
for file in old_model_files: |
|
model_del.append(file) |
|
|
|
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth")) |
|
|
|
if epoch >= custom_total_epoch: |
|
lowest_value_rounded = float(lowest_value["value"]) |
|
lowest_value_rounded = round(lowest_value_rounded, 3) |
|
|
|
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3))) |
|
logger.info(translations["training_info"].format(lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'])) |
|
|
|
pid_file_path = os.path.join(experiment_dir, "config.json") |
|
|
|
with open(pid_file_path, "r") as pid_file: |
|
pid_data = json.load(pid_file) |
|
with open(pid_file_path, "w") as pid_file: |
|
pid_data.pop("process_pids", None) |
|
json.dump(pid_data, pid_file, indent=4) |
|
|
|
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth")) |
|
done = True |
|
|
|
if model_add: |
|
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()) |
|
|
|
for m in model_add: |
|
if not os.path.exists(m): extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_dir=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author) |
|
|
|
for m in model_del: |
|
os.remove(m) |
|
|
|
lowest_value_rounded = float(lowest_value["value"]) |
|
lowest_value_rounded = round(lowest_value_rounded, 3) |
|
|
|
if epoch > 1 and overtraining_detector: |
|
remaining_epochs_gen = overtraining_threshold - consecutive_increases_gen |
|
remaining_epochs_disc = (overtraining_threshold * 2) - consecutive_increases_disc |
|
|
|
logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=remaining_epochs_gen, remaining_epochs_disc=remaining_epochs_disc, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) |
|
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'])) |
|
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record())) |
|
|
|
last_loss_gen_all = loss_gen_all |
|
|
|
if done: os._exit(2333333) |
|
|
|
if __name__ == "__main__": |
|
torch.multiprocessing.set_start_method("spawn") |
|
|
|
try: |
|
main() |
|
except Exception as e: |
|
logger.error(f"{translations['training_error']} {e}") |