|
import os |
|
import sys |
|
import torch |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
from .commons import fused_add_tanh_sigmoid_multiply |
|
|
|
class WaveNet(torch.nn.Module): |
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): |
|
super(WaveNet, self).__init__() |
|
assert kernel_size % 2 == 1 |
|
|
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = (kernel_size,) |
|
self.dilation_rate = dilation_rate |
|
|
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
self.drop = torch.nn.Dropout(p_dropout) |
|
|
|
if gin_channels != 0: |
|
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) |
|
self.cond_layer = torch.nn.utils.parametrizations.weight_norm(cond_layer, name="weight") |
|
|
|
dilations = [dilation_rate**i for i in range(n_layers)] |
|
paddings = [(kernel_size * d - d) // 2 for d in dilations] |
|
|
|
for i in range(n_layers): |
|
in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilations[i], padding=paddings[i]) |
|
in_layer = torch.nn.utils.parametrizations.weight_norm(in_layer, name="weight") |
|
|
|
self.in_layers.append(in_layer) |
|
|
|
res_skip_channels = (hidden_channels if i == n_layers - 1 else 2 * hidden_channels) |
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) |
|
res_skip_layer = torch.nn.utils.parametrizations.weight_norm(res_skip_layer, name="weight") |
|
|
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
def forward(self, x, x_mask, g=None, **kwargs): |
|
output = torch.zeros_like(x) |
|
n_channels_tensor = torch.IntTensor([self.hidden_channels]) |
|
|
|
if g is not None: g = self.cond_layer(g) |
|
|
|
for i in range(self.n_layers): |
|
x_in = self.in_layers[i](x) |
|
|
|
if g is not None: |
|
cond_offset = i * 2 * self.hidden_channels |
|
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] |
|
else: g_l = torch.zeros_like(x_in) |
|
|
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) |
|
acts = self.drop(acts) |
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
|
|
if i < self.n_layers - 1: |
|
res_acts = res_skip_acts[:, : self.hidden_channels, :] |
|
x = (x + res_acts) * x_mask |
|
output = output + res_skip_acts[:, self.hidden_channels :, :] |
|
else: output = output + res_skip_acts |
|
|
|
return output * x_mask |
|
|
|
def remove_weight_norm(self): |
|
if self.gin_channels != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) |
|
|
|
for l in self.in_layers: |
|
torch.nn.utils.remove_weight_norm(l) |
|
|
|
for l in self.res_skip_layers: |
|
torch.nn.utils.remove_weight_norm(l) |