|
import os |
|
import gc |
|
import sys |
|
import torch |
|
import librosa |
|
|
|
import numpy as np |
|
import soundfile as sf |
|
|
|
from logging import Logger |
|
from pydub import AudioSegment |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
|
|
from . import spec_utils |
|
from main.configs.config import Config |
|
|
|
translations = Config().translations |
|
|
|
class CommonSeparator: |
|
ALL_STEMS = "All Stems" |
|
VOCAL_STEM = "Vocals" |
|
INST_STEM = "Instrumental" |
|
OTHER_STEM = "Other" |
|
BASS_STEM = "Bass" |
|
DRUM_STEM = "Drums" |
|
GUITAR_STEM = "Guitar" |
|
PIANO_STEM = "Piano" |
|
SYNTH_STEM = "Synthesizer" |
|
STRINGS_STEM = "Strings" |
|
WOODWINDS_STEM = "Woodwinds" |
|
BRASS_STEM = "Brass" |
|
WIND_INST_STEM = "Wind Inst" |
|
NO_OTHER_STEM = "No Other" |
|
NO_BASS_STEM = "No Bass" |
|
NO_DRUM_STEM = "No Drums" |
|
NO_GUITAR_STEM = "No Guitar" |
|
NO_PIANO_STEM = "No Piano" |
|
NO_SYNTH_STEM = "No Synthesizer" |
|
NO_STRINGS_STEM = "No Strings" |
|
NO_WOODWINDS_STEM = "No Woodwinds" |
|
NO_WIND_INST_STEM = "No Wind Inst" |
|
NO_BRASS_STEM = "No Brass" |
|
PRIMARY_STEM = "Primary Stem" |
|
SECONDARY_STEM = "Secondary Stem" |
|
LEAD_VOCAL_STEM = "lead_only" |
|
BV_VOCAL_STEM = "backing_only" |
|
LEAD_VOCAL_STEM_I = "with_lead_vocals" |
|
BV_VOCAL_STEM_I = "with_backing_vocals" |
|
LEAD_VOCAL_STEM_LABEL = "Lead Vocals" |
|
BV_VOCAL_STEM_LABEL = "Backing Vocals" |
|
NO_STEM = "No " |
|
|
|
STEM_PAIR_MAPPER = {VOCAL_STEM: INST_STEM, INST_STEM: VOCAL_STEM, LEAD_VOCAL_STEM: BV_VOCAL_STEM, BV_VOCAL_STEM: LEAD_VOCAL_STEM, PRIMARY_STEM: SECONDARY_STEM} |
|
|
|
NON_ACCOM_STEMS = (VOCAL_STEM, OTHER_STEM, BASS_STEM, DRUM_STEM, GUITAR_STEM, PIANO_STEM, SYNTH_STEM, STRINGS_STEM, WOODWINDS_STEM, BRASS_STEM, WIND_INST_STEM) |
|
|
|
|
|
def __init__(self, config): |
|
self.logger: Logger = config.get("logger") |
|
self.log_level: int = config.get("log_level") |
|
self.torch_device = config.get("torch_device") |
|
self.torch_device_cpu = config.get("torch_device_cpu") |
|
self.torch_device_mps = config.get("torch_device_mps") |
|
self.onnx_execution_provider = config.get("onnx_execution_provider") |
|
self.model_name = config.get("model_name") |
|
self.model_path = config.get("model_path") |
|
self.model_data = config.get("model_data") |
|
self.output_dir = config.get("output_dir") |
|
self.output_format = config.get("output_format") |
|
self.output_bitrate = config.get("output_bitrate") |
|
self.normalization_threshold = config.get("normalization_threshold") |
|
self.enable_denoise = config.get("enable_denoise") |
|
self.output_single_stem = config.get("output_single_stem") |
|
self.invert_using_spec = config.get("invert_using_spec") |
|
self.sample_rate = config.get("sample_rate") |
|
|
|
self.primary_stem_name = None |
|
self.secondary_stem_name = None |
|
|
|
if "training" in self.model_data and "instruments" in self.model_data["training"]: |
|
instruments = self.model_data["training"]["instruments"] |
|
|
|
if instruments: |
|
self.primary_stem_name = instruments[0] |
|
self.secondary_stem_name = instruments[1] if len(instruments) > 1 else self.secondary_stem(self.primary_stem_name) |
|
|
|
if self.primary_stem_name is None: |
|
self.primary_stem_name = self.model_data.get("primary_stem", "Vocals") |
|
self.secondary_stem_name = self.secondary_stem(self.primary_stem_name) |
|
|
|
self.is_karaoke = self.model_data.get("is_karaoke", False) |
|
self.is_bv_model = self.model_data.get("is_bv_model", False) |
|
self.bv_model_rebalance = self.model_data.get("is_bv_model_rebalanced", 0) |
|
|
|
self.logger.debug(translations["info"].format(model_name=self.model_name, model_path=self.model_path)) |
|
self.logger.debug(translations["info_2"].format(output_dir=self.output_dir, output_format=self.output_format)) |
|
self.logger.debug(translations["info_3"].format(normalization_threshold=self.normalization_threshold)) |
|
self.logger.debug(translations["info_4"].format(enable_denoise=self.enable_denoise, output_single_stem=self.output_single_stem)) |
|
self.logger.debug(translations["info_5"].format(invert_using_spec=self.invert_using_spec, sample_rate=self.sample_rate)) |
|
self.logger.debug(translations["info_6"].format(primary_stem_name=self.primary_stem_name, secondary_stem_name=self.secondary_stem_name)) |
|
self.logger.debug(translations["info_7"].format(is_karaoke=self.is_karaoke, is_bv_model=self.is_bv_model, bv_model_rebalance=self.bv_model_rebalance)) |
|
|
|
self.audio_file_path = None |
|
self.audio_file_base = None |
|
self.primary_source = None |
|
self.secondary_source = None |
|
self.primary_stem_output_path = None |
|
self.secondary_stem_output_path = None |
|
self.cached_sources_map = {} |
|
|
|
def secondary_stem(self, primary_stem: str): |
|
primary_stem = primary_stem if primary_stem else self.NO_STEM |
|
|
|
return self.STEM_PAIR_MAPPER[primary_stem] if primary_stem in self.STEM_PAIR_MAPPER else primary_stem.replace(self.NO_STEM, "") if self.NO_STEM in primary_stem else f"{self.NO_STEM}{primary_stem}" |
|
|
|
def separate(self, audio_file_path): |
|
pass |
|
|
|
def final_process(self, stem_path, source, stem_name): |
|
self.logger.debug(translations["success_process"].format(stem_name=stem_name)) |
|
self.write_audio(stem_path, source) |
|
|
|
return {stem_name: source} |
|
|
|
def cached_sources_clear(self): |
|
self.cached_sources_map = {} |
|
|
|
def cached_source_callback(self, model_architecture, model_name=None): |
|
model, sources = None, None |
|
mapper = self.cached_sources_map[model_architecture] |
|
|
|
for key, value in mapper.items(): |
|
if model_name in key: |
|
model = key |
|
sources = value |
|
|
|
return model, sources |
|
|
|
def cached_model_source_holder(self, model_architecture, sources, model_name=None): |
|
self.cached_sources_map[model_architecture] = {**self.cached_sources_map.get(model_architecture, {}), **{model_name: sources}} |
|
|
|
def prepare_mix(self, mix): |
|
audio_path = mix |
|
|
|
if not isinstance(mix, np.ndarray): |
|
self.logger.debug(f"{translations['load_audio']}: {mix}") |
|
mix, sr = librosa.load(mix, mono=False, sr=self.sample_rate) |
|
self.logger.debug(translations["load_audio_success"].format(sr=sr, shape=mix.shape)) |
|
else: |
|
self.logger.debug(translations["convert_mix"]) |
|
mix = mix.T |
|
self.logger.debug(translations["convert_shape"].format(shape=mix.shape)) |
|
|
|
if isinstance(audio_path, str): |
|
if not np.any(mix): |
|
error_msg = translations["audio_not_valid"].format(audio_path=audio_path) |
|
self.logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
else: self.logger.debug(translations["audio_valid"]) |
|
|
|
if mix.ndim == 1: |
|
self.logger.debug(translations["mix_single"]) |
|
mix = np.asfortranarray([mix, mix]) |
|
self.logger.debug(translations["convert_mix_audio"]) |
|
|
|
self.logger.debug(translations["mix_success_2"]) |
|
return mix |
|
|
|
def write_audio(self, stem_path: str, stem_source): |
|
duration_seconds = librosa.get_duration(filename=self.audio_file_path) |
|
duration_hours = duration_seconds / 3600 |
|
self.logger.info(translations["duration"].format(duration_hours=f"{duration_hours:.2f}", duration_seconds=f"{duration_seconds:.2f}")) |
|
|
|
if duration_hours >= 1: |
|
self.logger.warning(translations["write"].format(name="soundfile")) |
|
self.write_audio_soundfile(stem_path, stem_source) |
|
else: |
|
self.logger.info(translations["write"].format(name="pydub")) |
|
self.write_audio_pydub(stem_path, stem_source) |
|
|
|
def write_audio_pydub(self, stem_path: str, stem_source): |
|
self.logger.debug(f"{translations['write_audio'].format(name='write_audio_pydub')} {stem_path}") |
|
|
|
stem_source = spec_utils.normalize(wave=stem_source, max_peak=self.normalization_threshold) |
|
|
|
if np.max(np.abs(stem_source)) < 1e-6: |
|
self.logger.warning(translations["original_not_valid"]) |
|
return |
|
|
|
if self.output_dir: |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
stem_path = os.path.join(self.output_dir, stem_path) |
|
|
|
self.logger.debug(f"{translations['shape_audio']}: {stem_source.shape}") |
|
self.logger.debug(f"{translations['convert_data']}: {stem_source.dtype}") |
|
|
|
if stem_source.dtype != np.int16: |
|
stem_source = (stem_source * 32767).astype(np.int16) |
|
self.logger.debug(translations["original_source_to_int16"]) |
|
|
|
stem_source_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16) |
|
stem_source_interleaved[0::2] = stem_source[:, 0] |
|
stem_source_interleaved[1::2] = stem_source[:, 1] |
|
|
|
self.logger.debug(f"{translations['shape_audio_2']}: {stem_source_interleaved.shape}") |
|
|
|
try: |
|
audio_segment = AudioSegment(stem_source_interleaved.tobytes(), frame_rate=self.sample_rate, sample_width=stem_source.dtype.itemsize, channels=2) |
|
self.logger.debug(translations["create_audiosegment"]) |
|
except (IOError, ValueError) as e: |
|
self.logger.error(f"{translations['create_audiosegment_error']}: {e}") |
|
return |
|
|
|
file_format = stem_path.lower().split(".")[-1] |
|
|
|
if file_format == "m4a": file_format = "mp4" |
|
elif file_format == "mka": file_format = "matroska" |
|
|
|
bitrate = "320k" if file_format == "mp3" and self.output_bitrate is None else self.output_bitrate |
|
|
|
try: |
|
audio_segment.export(stem_path, format=file_format, bitrate=bitrate) |
|
self.logger.debug(f"{translations['export_success']} {stem_path}") |
|
except (IOError, ValueError) as e: |
|
self.logger.error(f"{translations['export_error']}: {e}") |
|
|
|
def write_audio_soundfile(self, stem_path: str, stem_source): |
|
self.logger.debug(f"{translations['write_audio'].format(name='write_audio_soundfile')}: {stem_path}") |
|
|
|
if stem_source.shape[1] == 2: |
|
if stem_source.flags["F_CONTIGUOUS"]: stem_source = np.ascontiguousarray(stem_source) |
|
else: |
|
stereo_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16) |
|
stereo_interleaved[0::2] = stem_source[:, 0] |
|
|
|
stereo_interleaved[1::2] = stem_source[:, 1] |
|
stem_source = stereo_interleaved |
|
|
|
self.logger.debug(f"{translations['shape_audio_2']}: {stem_source.shape}") |
|
|
|
try: |
|
sf.write(stem_path, stem_source, self.sample_rate) |
|
self.logger.debug(f"{translations['export_success']} {stem_path}") |
|
except Exception as e: |
|
self.logger.error(f"{translations['export_error']}: {e}") |
|
|
|
def clear_gpu_cache(self): |
|
self.logger.debug(translations["clean"]) |
|
gc.collect() |
|
|
|
if self.torch_device == torch.device("mps"): |
|
self.logger.debug(translations["clean_cache"].format(name="MPS")) |
|
torch.mps.empty_cache() |
|
|
|
if self.torch_device == torch.device("cuda"): |
|
self.logger.debug(translations["clean_cache"].format(name="CUDA")) |
|
torch.cuda.empty_cache() |
|
|
|
def clear_file_specific_paths(self): |
|
self.logger.info(translations["del_path"]) |
|
self.audio_file_path = None |
|
self.audio_file_base = None |
|
|
|
self.primary_source = None |
|
self.secondary_source = None |
|
|
|
self.primary_stem_output_path = None |
|
self.secondary_stem_output_path = None |