RVC-GUI / main /inference /extract.py
AnhP's picture
Upload 82 files
e4d8df5 verified
raw
history blame
23.8 kB
import os
import re
import sys
import time
import tqdm
import torch
import shutil
import logging
import argparse
import warnings
import onnxruntime
import logging.handlers
import numpy as np
import soundfile as sf
import torch.nn.functional as F
from random import shuffle
from distutils.util import strtobool
from fairseq import checkpoint_utils
from concurrent.futures import ThreadPoolExecutor, as_completed
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.utils import check_predictors, check_embedders, load_audio
logger = logging.getLogger(__name__)
translations = Config().translations
logger.propagate = False
warnings.filterwarnings("ignore")
for l in ["torch", "faiss", "httpx", "fairseq", "httpcore", "faiss.loader", "numba.core", "urllib3"]:
logging.getLogger(l).setLevel(logging.ERROR)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--rvc_version", type=str, default="v2")
parser.add_argument("--f0_method", type=str, default="rmvpe")
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
parser.add_argument("--hop_length", type=int, default=128)
parser.add_argument("--cpu_cores", type=int, default=2)
parser.add_argument("--gpu", type=str, default="-")
parser.add_argument("--sample_rate", type=int, required=True)
parser.add_argument("--embedder_model", type=str, default="contentvec_base.pt")
parser.add_argument("--f0_onnx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--embedders_onnx", type=lambda x: bool(strtobool(x)), default=False)
return parser.parse_args()
def generate_config(rvc_version, sample_rate, model_path):
config_save_path = os.path.join(model_path, "config.json")
if not os.path.exists(config_save_path): shutil.copy(os.path.join("main", "configs", rvc_version, f"{sample_rate}.json"), config_save_path)
def generate_filelist(pitch_guidance, model_path, rvc_version, sample_rate):
gt_wavs_dir, feature_dir = os.path.join(model_path, "sliced_audios"), os.path.join(model_path, f"{rvc_version}_extracted")
f0_dir, f0nsf_dir = None, None
if pitch_guidance: f0_dir, f0nsf_dir = os.path.join(model_path, "f0"), os.path.join(model_path, "f0_voiced")
gt_wavs_files, feature_files = set(name.split(".")[0] for name in os.listdir(gt_wavs_dir)), set(name.split(".")[0] for name in os.listdir(feature_dir))
names = gt_wavs_files & feature_files & set(name.split(".")[0] for name in os.listdir(f0_dir)) & set(name.split(".")[0] for name in os.listdir(f0nsf_dir)) if pitch_guidance else gt_wavs_files & feature_files
options = []
mute_base_path = os.path.join("assets", "logs", "mute")
for name in names:
options.append(f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|{f0_dir}/{name}.wav.npy|{f0nsf_dir}/{name}.wav.npy|0" if pitch_guidance else f"{gt_wavs_dir}/{name}.wav|{feature_dir}/{name}.npy|0")
mute_audio_path, mute_feature_path = os.path.join(mute_base_path, "sliced_audios", f"mute{sample_rate}.wav"), os.path.join(mute_base_path, f"{rvc_version}_extracted", "mute.npy")
for _ in range(2):
options.append(f"{mute_audio_path}|{mute_feature_path}|{os.path.join(mute_base_path, 'f0', 'mute.wav.npy')}|{os.path.join(mute_base_path, 'f0_voiced', 'mute.wav.npy')}|0" if pitch_guidance else f"{mute_audio_path}|{mute_feature_path}|0")
shuffle(options)
with open(os.path.join(model_path, "filelist.txt"), "w") as f:
f.write("\n".join(options))
def setup_paths(exp_dir, version = None):
wav_path = os.path.join(exp_dir, "sliced_audios_16k")
if version:
out_path = os.path.join(exp_dir, f"{version}_extracted")
os.makedirs(out_path, exist_ok=True)
return wav_path, out_path
else:
output_root1, output_root2 = os.path.join(exp_dir, "f0"), os.path.join(exp_dir, "f0_voiced")
os.makedirs(output_root1, exist_ok=True); os.makedirs(output_root2, exist_ok=True)
return wav_path, output_root1, output_root2
def read_wave(wav_path, normalize = False):
wav, sr = sf.read(wav_path)
assert sr == 16000, translations["sr_not_16000"]
feats = torch.from_numpy(wav).float()
if feats.dim() == 2: feats = feats.mean(-1)
feats = feats.view(1, -1)
if normalize: feats = F.layer_norm(feats, feats.shape)
return feats
def get_device(gpu_index):
try:
index = int(gpu_index)
if index < torch.cuda.device_count(): return f"cuda:{index}"
else: logger.warning(translations["gpu_not_valid"])
except ValueError:
logger.warning(translations["gpu_not_valid"])
return "cpu"
def get_providers():
ort_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in ort_providers: providers = ["CUDAExecutionProvider"]
elif "CoreMLExecutionProvider" in ort_providers: providers = ["CoreMLExecutionProvider"]
else: providers = ["CPUExecutionProvider"]
return providers
class FeatureInput:
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
self.fs = sample_rate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = device
def compute_f0_hybrid(self, methods_str, np_arr, hop_length, f0_onnx):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack, resampled_stack = [], []
logger.debug(translations["hybrid_methods"].format(methods=methods))
for method in methods:
f0 = None
f0_methods = {"pm": lambda: self.get_pm(np_arr), "diow": lambda: self.get_pyworld_wrapper(np_arr, "dio"), "dio": lambda: self.get_pyworld(np_arr, "dio"), "mangio-crepe-full": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "full", onnx=f0_onnx), "mangio-crepe-large": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "large", onnx=f0_onnx), "mangio-crepe-medium": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "medium", onnx=f0_onnx), "mangio-crepe-small": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "small", onnx=f0_onnx), "mangio-crepe-tiny": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "tiny", onnx=f0_onnx), "crepe-full": lambda: self.get_crepe(np_arr, "full", onnx=f0_onnx), "crepe-large": lambda: self.get_crepe(np_arr, "large", onnx=f0_onnx), "crepe-medium": lambda: self.get_crepe(np_arr, "medium", onnx=f0_onnx), "crepe-small": lambda: self.get_crepe(np_arr, "small", onnx=f0_onnx), "crepe-tiny": lambda: self.get_crepe(np_arr, "tiny", onnx=f0_onnx), "fcpe": lambda: self.get_fcpe(np_arr, int(hop_length), onnx=f0_onnx), "fcpe-legacy": lambda: self.get_fcpe(np_arr, int(hop_length), legacy=True, onnx=f0_onnx), "rmvpe": lambda: self.get_rmvpe(np_arr, onnx=f0_onnx), "rmvpe-legacy": lambda: self.get_rmvpe(np_arr, legacy=True, onnx=f0_onnx), "harvestw": lambda: self.get_pyworld_wrapper(np_arr, "harvest"), "harvest": lambda: self.get_pyworld(np_arr, "harvest"), "swipe": lambda: self.get_swipe(np_arr), "yin": lambda: self.get_yin(np_arr, int(hop_length), mode="yin"), "pyin": lambda: self.get_yin(np_arr, int(hop_length), mode="pyin")}
f0 = f0_methods.get(method, lambda: ValueError(translations["method_not_valid"]))()
f0_computation_stack.append(f0)
for f0 in f0_computation_stack:
resampled_stack.append(np.interp(np.linspace(0, len(f0), (np_arr.size // self.hop)), np.arange(len(f0)), f0))
return resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
def compute_f0(self, np_arr, f0_method, hop_length, f0_onnx=False):
f0_methods = {"pm": lambda: self.get_pm(np_arr), "diow": lambda: self.get_pyworld_wrapper(np_arr, "dio"), "dio": lambda: self.get_pyworld(np_arr, "dio"), "mangio-crepe-full": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "full", onnx=f0_onnx), "mangio-crepe-large": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "large", onnx=f0_onnx), "mangio-crepe-medium": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "medium", onnx=f0_onnx), "mangio-crepe-small": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "small", onnx=f0_onnx), "mangio-crepe-tiny": lambda: self.get_mangio_crepe(np_arr, int(hop_length), "tiny", onnx=f0_onnx), "crepe-full": lambda: self.get_crepe(np_arr, "full", onnx=f0_onnx), "crepe-large": lambda: self.get_crepe(np_arr, "large", onnx=f0_onnx), "crepe-medium": lambda: self.get_crepe(np_arr, "medium", onnx=f0_onnx), "crepe-small": lambda: self.get_crepe(np_arr, "small", onnx=f0_onnx), "crepe-tiny": lambda: self.get_crepe(np_arr, "tiny", onnx=f0_onnx), "fcpe": lambda: self.get_fcpe(np_arr, int(hop_length), onnx=f0_onnx), "fcpe-legacy": lambda: self.get_fcpe(np_arr, int(hop_length), legacy=True, onnx=f0_onnx), "rmvpe": lambda: self.get_rmvpe(np_arr, onnx=f0_onnx), "rmvpe-legacy": lambda: self.get_rmvpe(np_arr, legacy=True, onnx=f0_onnx), "harvestw": lambda: self.get_pyworld_wrapper(np_arr, "harvest"), "harvest": lambda: self.get_pyworld(np_arr, "harvest"), "swipe": lambda: self.get_swipe(np_arr), "yin": lambda: self.get_yin(np_arr, int(hop_length), mode="yin"), "pyin": lambda: self.get_yin(np_arr, int(hop_length), mode="pyin")}
return self.compute_f0_hybrid(f0_method, np_arr, int(hop_length), f0_onnx) if "hybrid" in f0_method else f0_methods.get(f0_method, lambda: ValueError(translations["method_not_valid"]))()
def get_pm(self, x):
import parselmouth
f0 = (parselmouth.Sound(x, self.fs).to_pitch_ac(time_step=(160 / 16000 * 1000) / 1000, voicing_threshold=0.6, pitch_floor=50, pitch_ceiling=1100).selected_array["frequency"])
pad_size = ((x.size // self.hop) - len(f0) + 1) // 2
if pad_size > 0 or (x.size // self.hop) - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, (x.size // self.hop) - len(f0) - pad_size]], mode="constant")
return f0
def get_mangio_crepe(self, x, hop_length, model="full", onnx=False):
from main.library.predictors.CREPE import predict
audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
audio /= torch.quantile(torch.abs(audio), 0.999)
audio = audio.unsqueeze(0)
source = predict(audio, self.fs, hop_length, self.f0_min, self.f0_max, model=model, batch_size=hop_length * 2, device=self.device, pad=True, providers=get_providers(), onnx=onnx).squeeze(0).cpu().float().numpy()
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source))
def get_crepe(self, x, model="full", onnx=False):
from main.library.predictors.CREPE import predict, mean, median
f0, pd = predict(torch.tensor(np.copy(x))[None].float(), self.fs, 160, self.f0_min, self.f0_max, model, batch_size=512, device=self.device, return_periodicity=True, providers=get_providers(), onnx=onnx)
f0, pd = mean(f0, 3), median(pd, 3)
f0[pd < 0.1] = 0
return f0[0].cpu().numpy()
def get_fcpe(self, x, hop_length, legacy=False, onnx=False):
from main.library.predictors.FCPE import FCPE
model_fcpe = FCPE(os.path.join("assets", "models", "predictors", ("fcpe_legacy" if legacy else"fcpe") + (".onnx" if onnx else ".pt")), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.fs, threshold=0.03, providers=get_providers(), onnx=onnx, legacy=legacy)
f0 = model_fcpe.compute_f0(x, p_len=(x.size // self.hop))
del model_fcpe
return f0
def get_rmvpe(self, x, legacy=False, onnx=False):
from main.library.predictors.RMVPE import RMVPE
rmvpe_model = RMVPE(os.path.join("assets", "models", "predictors", "rmvpe" + (".onnx" if onnx else ".pt")), device=self.device, onnx=onnx, providers=get_providers())
f0 = rmvpe_model.infer_from_audio_with_pitch(x, thred=0.03, f0_min=self.f0_min, f0_max=self.f0_max) if legacy else rmvpe_model.infer_from_audio(x, thred=0.03)
del rmvpe_model
return f0
def get_pyworld_wrapper(self, x, model="harvest"):
from main.library.predictors.WORLD_WRAPPER import PYWORLD
pw = PYWORLD()
x = x.astype(np.double)
if model == "harvest": f0, t = pw.harvest(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
elif model == "dio": f0, t = pw.dio(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
else: raise ValueError(translations["method_not_valid"])
return pw.stonemask(x, self.fs, t, f0)
def get_pyworld(self, x, model="harvest"):
from main.library.predictors.pyworld import dio, harvest, stonemask
x = x.astype(np.double)
if model == "harvest": f0, t = harvest.harvest(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
elif model == "dio": f0, t = dio.dio(x, fs=self.fs, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=1000 * self.hop / self.fs)
else: raise ValueError(translations["method_not_valid"])
return stonemask.stonemask(x, self.fs, t, f0)
def get_swipe(self, x):
from main.library.predictors.SWIPE import swipe
f0, _ = swipe(x.astype(np.double), self.fs, f0_floor=self.f0_min, f0_ceil=self.f0_max, frame_period=1000 * self.hop / self.fs, device=self.device)
return f0
def get_yin(self, x, hop_length, mode="yin"):
import librosa
if mode == "yin":
source = np.array(librosa.yin(x.astype(np.float32), sr=self.fs, fmin=self.f0_min, fmax=self.f0_max, hop_length=hop_length))
source[source < 0.001] = np.nan
else:
f0, _, _ = librosa.pyin(x.astype(np.float32), fmin=self.f0_min, fmax=self.f0_max, sr=self.fs, hop_length=hop_length)
source = np.array(f0)
source[source < 0.001] = np.nan
return np.nan_to_num(np.interp(np.arange(0, len(source) * (x.size // self.hop), len(source)) / (x.size // self.hop), np.arange(0, len(source)), source))
def coarse_f0(self, f0):
return np.rint(np.clip(((1127 * np.log(1 + f0 / 700)) - self.f0_mel_min) * (self.f0_bin - 2) / (self.f0_mel_max - self.f0_mel_min) + 1, 1, self.f0_bin - 1)).astype(int)
def process_file(self, file_info, f0_method, hop_length, f0_onnx):
inp_path, opt_path1, opt_path2, np_arr = file_info
if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): return
try:
feature_pit = self.compute_f0(np_arr, f0_method, hop_length, f0_onnx)
if isinstance(feature_pit, tuple): feature_pit = feature_pit[0]
np.save(opt_path2, feature_pit, allow_pickle=False)
np.save(opt_path1, self.coarse_f0(feature_pit), allow_pickle=False)
except Exception as e:
raise RuntimeError(f"{translations['extract_file_error']} {inp_path}: {e}")
def process_files(self, files, f0_method, hop_length, f0_onnx, device, pbar):
self.device = device
for file_info in files:
self.process_file(file_info, f0_method, hop_length, f0_onnx)
pbar.update()
def run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus, f0_onnx):
input_root, *output_roots = setup_paths(exp_dir)
output_root1, output_root2 = output_roots if len(output_roots) == 2 else (output_roots[0], None)
paths = [(os.path.join(input_root, name), os.path.join(output_root1, name) if output_root1 else None, os.path.join(output_root2, name) if output_root2 else None, load_audio(logger, os.path.join(input_root, name), 16000)) for name in sorted(os.listdir(input_root)) if "spec" not in name]
logger.info(translations["extract_f0_method"].format(num_processes=num_processes, f0_method=f0_method))
start_time = time.time()
gpus = gpus.split("-")
process_partials = []
devices = get_device(gpu) if gpu != "" else "cpu"
pbar = tqdm.tqdm(total=len(paths), ncols=100, unit="p")
for idx, gpu in enumerate(gpus):
feature_input = FeatureInput(device=devices)
process_partials.append((feature_input, paths[idx::len(gpus)]))
with ThreadPoolExecutor(max_workers=num_processes) as executor:
for future in as_completed([executor.submit(FeatureInput.process_files, feature_input, part_paths, f0_method, hop_length, f0_onnx, devices, pbar) for feature_input, part_paths in process_partials]):
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
future.result()
pbar.close()
logger.info(translations["extract_f0_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))
def extract_features(model, feats, version):
return torch.as_tensor(model.run([model.get_outputs()[0].name, model.get_outputs()[1].name], {"feats": feats.detach().cpu().numpy()})[0 if version == "v1" else 1], dtype=torch.float32, device=feats.device)
def process_file_embedding(file, wav_path, out_path, model, device, version, saved_cfg, embed_suffix):
out_file_path = os.path.join(out_path, file.replace("wav", "npy"))
if os.path.exists(out_file_path): return
feats = read_wave(os.path.join(wav_path, file), normalize=saved_cfg.task.normalize if saved_cfg else False).to(device).float()
if embed_suffix == ".pt": inputs = {"source": feats, "padding_mask": torch.BoolTensor(feats.shape).fill_(False).to(device), "output_layer": 9 if version == "v1" else 12}
with torch.no_grad():
if embed_suffix == ".pt":
model = model.to(device).float().eval()
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
else: feats = extract_features(model, feats, version).to(device)
feats = feats.squeeze(0).float().cpu().numpy()
if not np.isnan(feats).any(): np.save(out_file_path, feats, allow_pickle=False)
else: logger.warning(f"{file} {translations['NaN']}")
def run_embedding_extraction(exp_dir, version, gpus, embedder_model):
wav_path, out_path = setup_paths(exp_dir, version)
logger.info(translations["start_extract_hubert"])
start_time = time.time()
embedder_model_path = os.path.join("assets", "models", "embedders", embedder_model)
if not os.path.exists(embedder_model_path) and not embedder_model.endswith((".pt", ".onnx")): raise FileNotFoundError(f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}")
try:
if embedder_model.endswith(".pt"):
models, saved_cfg, _ = checkpoint_utils.load_model_ensemble_and_task([embedder_model_path], suffix="")
models = models[0]
embed_suffix = ".pt"
else:
sess_options = onnxruntime.SessionOptions()
sess_options.log_severity_level = 3
models = onnxruntime.InferenceSession(embedder_model_path, sess_options=sess_options, providers=get_providers())
saved_cfg, embed_suffix = None, ".onnx"
except Exception as e:
raise ImportError(translations["read_model_error"].format(e=e))
devices = [(get_device(gpu) for gpu in (gpus.split("-"))) if gpus != "-" else "cpu"]
paths = sorted([file for file in os.listdir(wav_path) if file.endswith(".wav")])
if not paths:
logger.warning(translations["not_found_audio_file"])
sys.exit(1)
pbar = tqdm.tqdm(total=len(paths) * len(devices), ncols=100, unit="p")
for task in [(file, wav_path, out_path, models, device, version, saved_cfg, embed_suffix) for file in paths for device in devices]:
try:
process_file_embedding(*task)
except Exception as e:
raise RuntimeError(f"{translations['process_error']} {task[0]}: {e}")
pbar.update(1)
logger.debug(pbar.format_meter(pbar.n, pbar.total, pbar.format_dict["elapsed"]))
pbar.close()
logger.info(translations["extract_hubert_success"].format(elapsed_time=f"{(time.time() - start_time):.2f}"))
if __name__ == "__main__":
args = parse_arguments()
exp_dir = os.path.join("assets", "logs", args.model_name)
f0_method, hop_length, num_processes, gpus, version, pitch_guidance, sample_rate, embedder_model, f0_onnx, embedders_onnx = args.f0_method, args.hop_length, args.cpu_cores, args.gpu, args.rvc_version, args.pitch_guidance, args.sample_rate, args.embedder_model, args.f0_onnx, args.embedders_onnx
check_predictors(f0_method, f0_onnx); check_embedders(embedder_model, embedders_onnx)
embedder_model += ".onnx" if embedders_onnx else ".pt"
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "extract.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
log_data = {translations['modelname']: args.model_name, translations['export_process']: exp_dir, translations['f0_method']: f0_method, translations['pretrain_sr']: sample_rate, translations['cpu_core']: num_processes, "Gpu": gpus, "Hop length": hop_length, translations['training_version']: version, translations['extract_f0']: pitch_guidance, translations['hubert_model']: embedder_model, translations["f0_onnx_mode"]: f0_onnx, translations["embed_onnx"]: embedders_onnx}
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
pid_path = os.path.join(exp_dir, "extract_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
try:
run_pitch_extraction(exp_dir, f0_method, hop_length, num_processes, gpus, f0_onnx)
run_embedding_extraction(exp_dir, version, gpus, embedder_model)
generate_config(version, sample_rate, exp_dir)
generate_filelist(pitch_guidance, exp_dir, version, sample_rate)
except Exception as e:
logger.error(f"{translations['extract_error']}: {e}")
import traceback
logger.debug(traceback.format_exc())
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(f"{translations['extract_success']} {args.model_name}.")