import os import sys import faiss import logging import argparse import logging.handlers import numpy as np from multiprocessing import cpu_count from sklearn.cluster import MiniBatchKMeans sys.path.append(os.getcwd()) from main.configs.config import Config translations = Config().translations def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, required=True) parser.add_argument("--rvc_version", type=str, default="v2") parser.add_argument("--index_algorithm", type=str, default="Auto") return parser.parse_args() def main(): args = parse_arguments() exp_dir = os.path.join("assets", "logs", args.model_name) version = args.rvc_version index_algorithm = args.index_algorithm logger = logging.getLogger(__name__) if logger.hasHandlers(): logger.handlers.clear() else: console_handler = logging.StreamHandler() console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") console_handler.setFormatter(console_formatter) console_handler.setLevel(logging.INFO) file_handler = logging.handlers.RotatingFileHandler(os.path.join(exp_dir, "create_index.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8') file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") file_handler.setFormatter(file_formatter) file_handler.setLevel(logging.DEBUG) logger.addHandler(console_handler) logger.addHandler(file_handler) logger.setLevel(logging.DEBUG) log_data = {translations['modelname']: args.model_name, translations['model_path']: exp_dir, translations['training_version']: version, translations['index_algorithm_info']: index_algorithm} for key, value in log_data.items(): logger.debug(f"{key}: {value}") try: npys = [] feature_dir = os.path.join(exp_dir, f"{version}_extracted") model_name = os.path.basename(exp_dir) for name in sorted(os.listdir(feature_dir)): npys.append(np.load(os.path.join(feature_dir, name))) big_npy = np.concatenate(npys, axis=0) big_npy_idx = np.arange(big_npy.shape[0]) np.random.shuffle(big_npy_idx) big_npy = big_npy[big_npy_idx] if big_npy.shape[0] > 2e5 and (index_algorithm == "Auto" or index_algorithm == "KMeans"): big_npy = (MiniBatchKMeans(n_clusters=10000, verbose=True, batch_size=256 * cpu_count(), compute_labels=False, init="random").fit(big_npy).cluster_centers_) np.save(os.path.join(exp_dir, "total_fea.npy"), big_npy) n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) index_trained = faiss.index_factory(256 if version == "v1" else 768, f"IVF{n_ivf},Flat") index_ivf_trained = faiss.extract_index_ivf(index_trained) index_ivf_trained.nprobe = 1 index_trained.train(big_npy) faiss.write_index(index_trained, os.path.join(exp_dir, f"trained_IVF{n_ivf}_Flat_nprobe_{index_ivf_trained.nprobe}_{model_name}_{version}.index")) index_added = faiss.index_factory(256 if version == "v1" else 768, f"IVF{n_ivf},Flat") index_ivf_added = faiss.extract_index_ivf(index_added) index_ivf_added.nprobe = 1 index_added.train(big_npy) batch_size_add = 8192 for i in range(0, big_npy.shape[0], batch_size_add): index_added.add(big_npy[i : i + batch_size_add]) index_filepath_added = os.path.join(exp_dir, f"added_IVF{n_ivf}_Flat_nprobe_{index_ivf_added.nprobe}_{model_name}_{version}.index") faiss.write_index(index_added, index_filepath_added) logger.info(f"{translations['save_index']} '{index_filepath_added}'") except Exception as e: logger.error(f"{translations['create_index_error']}: {e}") import traceback logger.debug(traceback.format_exc()) if __name__ == "__main__": main()