import os import sys import onnx import json import torch import onnxsim import warnings sys.path.append(os.getcwd()) from main.library.algorithm.synthesizers import SynthesizerONNX warnings.filterwarnings("ignore") def onnx_exporter(input_path, output_path, device="cpu"): cpt = (torch.load(input_path, map_location="cpu") if os.path.isfile(input_path) else None) cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] model_name, model_author, epochs, steps, version, f0, model_hash, vocoder, creation_date = cpt.get("model_name", None), cpt.get("author", None), cpt.get("epoch", None), cpt.get("step", None), cpt.get("version", "v1"), cpt.get("f0", 1), cpt.get("model_hash", None), cpt.get("vocoder", "Default"), cpt.get("creation_date", None) text_enc_hidden_dim = 768 if version == "v2" else 256 tgt_sr = cpt["config"][-1] net_g = SynthesizerONNX(*cpt["config"], use_f0=f0, text_enc_hidden_dim=text_enc_hidden_dim, vocoder=vocoder, checkpointing=False) net_g.load_state_dict(cpt["weight"], strict=False) if f0: args = (torch.rand(1, 200, text_enc_hidden_dim).to(device), torch.tensor([200]).long().to(device), torch.LongTensor([0]).to(device), torch.rand(1, 192, 200).to(device), torch.randint(size=(1, 200), low=5, high=255).to(device), torch.rand(1, 200).to(device)) input_names = ["phone", "phone_lengths", "ds", "rnd", "pitch", "pitchf"] dynamic_axes = {"phone": [1], "rnd": [2], "pitch": [1], "pitchf": [1]} else: args = (torch.rand(1, 200, text_enc_hidden_dim).to(device), torch.tensor([200]).long().to(device), torch.LongTensor([0]).to(device), torch.rand(1, 192, 200).to(device)) input_names = ["phone", "phone_lengths", "ds", "rnd"] dynamic_axes = {"phone": [1], "rnd": [2]} torch.onnx.export(net_g, args, output_path, do_constant_folding=False, opset_version=17, verbose=False, input_names=input_names, output_names=["audio"], dynamic_axes=dynamic_axes) model, _ = onnxsim.simplify(output_path) model.metadata_props.append(onnx.StringStringEntryProto(key="model_info", value=json.dumps({"model_name": model_name, "author": model_author, "epoch": epochs, "step": steps, "version": version, "sr": tgt_sr, "f0": f0, "model_hash": model_hash, "creation_date": creation_date, "vocoder": vocoder, "text_enc_hidden_dim": text_enc_hidden_dim}))) onnx.save(model, output_path) return output_path