Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,149 +1,36 @@
|
|
1 |
|
2 |
-
import os
|
3 |
import streamlit as st
|
4 |
-
import
|
5 |
-
import datetime
|
6 |
-
import openai
|
7 |
-
import feedparser
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
from tavily import TavilyClient
|
10 |
-
from PyPDF2 import PdfReader
|
11 |
-
import faiss
|
12 |
-
import numpy as np
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
17 |
-
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY", "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")
|
18 |
-
tavily = TavilyClient(api_key=TAVILY_API_KEY)
|
19 |
|
20 |
-
# ---
|
21 |
-
st.set_page_config(page_title="GPT Researcher Agent", layout="wide")
|
22 |
-
st.title("π GPT-Powered Research Assistant")
|
23 |
-
|
24 |
-
# --- Helper: APA Citation ---
|
25 |
-
def generate_apa_citation(title, url, source):
|
26 |
-
year = datetime.datetime.now().year
|
27 |
-
label = {
|
28 |
-
"arxiv": "*arXiv*", "semantic": "*Semantic Scholar*", "web": "*Web*"
|
29 |
-
}.get(source, "*Web*")
|
30 |
-
return f"{title}. ({year}). {label}. {url}"
|
31 |
-
|
32 |
-
# --- Search Tools ---
|
33 |
-
def tavily_search(query):
|
34 |
-
results = tavily.search(query, search_depth="advanced", max_results=5)
|
35 |
-
return results.get("results", [])
|
36 |
-
|
37 |
-
def arxiv_search(query):
|
38 |
-
from urllib.parse import quote_plus
|
39 |
-
url = f"http://export.arxiv.org/api/query?search_query=all:{quote_plus(query)}&start=0&max_results=3"
|
40 |
-
feed = feedparser.parse(url)
|
41 |
-
return [{
|
42 |
-
"title": e.title,
|
43 |
-
"summary": e.summary.replace("\n", " ").strip(),
|
44 |
-
"url": next((l.href for l in e.links if l.type == "application/pdf"), "")
|
45 |
-
} for e in feed.entries]
|
46 |
-
|
47 |
-
# --- Document Embedding ---
|
48 |
-
def embed_document(file):
|
49 |
-
doc_text = ""
|
50 |
-
if file.name.endswith(".pdf"):
|
51 |
-
reader = PdfReader(file)
|
52 |
-
for page in reader.pages:
|
53 |
-
text = page.extract_text()
|
54 |
-
if text:
|
55 |
-
doc_text += text
|
56 |
-
else:
|
57 |
-
doc_text = file.read().decode("utf-8")
|
58 |
-
|
59 |
-
chunks = [doc_text[i:i+1000] for i in range(0, len(doc_text), 1000)]
|
60 |
-
embeddings = openai.Embedding.create(input=chunks, model="text-embedding-ada-002")
|
61 |
-
vectors = [np.array(rec["embedding"], dtype=np.float32) for rec in embeddings["data"]]
|
62 |
-
|
63 |
-
dim = len(vectors[0])
|
64 |
-
index = faiss.IndexFlatL2(dim)
|
65 |
-
index.add(np.vstack(vectors))
|
66 |
-
|
67 |
-
return chunks, index
|
68 |
-
|
69 |
-
# --- Streaming GPT Call ---
|
70 |
-
def stream_response(messages):
|
71 |
-
response = openai.ChatCompletion.create(
|
72 |
-
model="gpt-4",
|
73 |
-
messages=messages,
|
74 |
-
max_tokens=3000,
|
75 |
-
stream=True
|
76 |
-
)
|
77 |
-
collected = ""
|
78 |
-
placeholder = st.empty()
|
79 |
-
for chunk in response:
|
80 |
-
delta = chunk["choices"][0].get("delta", {})
|
81 |
-
if "content" in delta:
|
82 |
-
token = delta["content"]
|
83 |
-
collected += token
|
84 |
-
placeholder.markdown(collected + "β")
|
85 |
-
placeholder.markdown(collected)
|
86 |
-
return collected
|
87 |
-
|
88 |
-
# --- Sidebar Input ---
|
89 |
with st.sidebar:
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
if sources in ["Documents", "Both"] and uploaded_file:
|
118 |
-
st.info("π Embedding and retrieving from uploaded document...")
|
119 |
-
chunks, index = embed_document(uploaded_file)
|
120 |
-
q_embed = openai.Embedding.create(input=[topic], model="text-embedding-ada-002")
|
121 |
-
q_vector = np.array(q_embed["data"][0]["embedding"], dtype=np.float32).reshape(1, -1)
|
122 |
-
D, I = index.search(q_vector, k=3)
|
123 |
-
for idx in I[0]:
|
124 |
-
context += chunks[idx] + "
|
125 |
-
"
|
126 |
-
citations.append(generate_apa_citation(uploaded_file.name, "Uploaded", "local"))
|
127 |
-
|
128 |
-
st.info("βοΈ Generating final research report...")
|
129 |
-
messages = [
|
130 |
-
{"role": "system", "content": f"You are a research assistant. Write a {report_type.lower()} in a {tone.lower()} tone, citing sources."},
|
131 |
-
{"role": "user", "content": f"Topic: {topic}
|
132 |
-
|
133 |
-
Context:
|
134 |
-
{context}
|
135 |
-
|
136 |
-
Write a complete report in academic markdown format."}
|
137 |
-
]
|
138 |
-
|
139 |
-
final_output = stream_response(messages)
|
140 |
-
|
141 |
-
# --- Show Output and Citations ---
|
142 |
-
st.subheader("π Final Report")
|
143 |
-
st.markdown(final_output, unsafe_allow_html=True)
|
144 |
-
|
145 |
-
st.subheader("π References")
|
146 |
-
for cite in citations:
|
147 |
-
st.markdown(f"- {cite}")
|
148 |
-
|
149 |
-
st.download_button("πΎ Download Markdown", final_output, file_name="report.md", mime="text/markdown")
|
|
|
1 |
|
|
|
2 |
import streamlit as st
|
3 |
+
from gpt_researcher.agent import GPTResearcher
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
st.set_page_config(page_title="GPT Researcher UI", layout="wide")
|
6 |
+
st.title("π€ GPT Researcher β Streamlit UI")
|
|
|
|
|
|
|
7 |
|
8 |
+
# --- Sidebar inputs ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
with st.sidebar:
|
10 |
+
st.header("π§ Research Configuration")
|
11 |
+
topic = st.text_input("π‘ Research Topic", "AI in climate change")
|
12 |
+
report_type = st.selectbox("π Report Type", ["summary", "detailed", "academic"])
|
13 |
+
report_format = st.selectbox("π Format", ["markdown", "text"])
|
14 |
+
report_source = st.selectbox("π Sources", ["web", "arxiv", "semantic-scholar", "hybrid"])
|
15 |
+
tone = st.selectbox("π― Tone", ["objective", "persuasive", "informative"])
|
16 |
+
start = st.button("π Start Research")
|
17 |
+
|
18 |
+
# --- Run GPTResearcher ---
|
19 |
+
if start and topic:
|
20 |
+
st.markdown("### β³ Running Autonomous Research Agent...")
|
21 |
+
with st.spinner("Gathering knowledge, synthesizing insights..."):
|
22 |
+
agent = GPTResearcher(
|
23 |
+
query=topic,
|
24 |
+
report_type=report_type,
|
25 |
+
report_format=report_format,
|
26 |
+
report_source=report_source,
|
27 |
+
tone=tone
|
28 |
+
)
|
29 |
+
output = agent.run()
|
30 |
+
|
31 |
+
st.success("β
Research Complete!")
|
32 |
+
|
33 |
+
st.markdown("### π Final Report")
|
34 |
+
st.markdown(output, unsafe_allow_html=True)
|
35 |
+
|
36 |
+
st.download_button("πΎ Download Markdown", output, file_name="report.md", mime="text/markdown")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|