Spaces:
Running
Running
Update predict.py
Browse files- predict.py +188 -99
predict.py
CHANGED
@@ -1,132 +1,221 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile,
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from ultralytics import YOLO
|
5 |
import tensorflow as tf
|
6 |
-
import
|
7 |
from typing import Union
|
8 |
|
9 |
-
|
10 |
-
|
11 |
PIXELS_PER_CM = 50.0
|
12 |
|
13 |
-
# ---
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# --- Helpers ---
|
26 |
def preprocess_image(image: np.ndarray) -> np.ndarray:
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
def
|
|
|
|
|
35 |
try:
|
36 |
results = yolo_model.predict(image, verbose=False)
|
37 |
-
if results and results[0].boxes:
|
|
|
38 |
best_box = sorted(results[0].boxes, key=lambda b: b.conf[0], reverse=True)[0]
|
39 |
coords = best_box.xyxy[0].cpu().numpy()
|
40 |
return tuple(map(int, coords))
|
41 |
except Exception as e:
|
42 |
-
print(f"YOLO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return None
|
44 |
|
45 |
-
def
|
46 |
-
|
|
|
47 |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
48 |
-
_,
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
except Exception as e:
|
69 |
-
print(f"Segmentation model failed: {e}")
|
70 |
-
return fallback_segmentation(image)
|
71 |
-
|
72 |
-
def calculate_metrics(mask: np.ndarray, image: np.ndarray) -> dict:
|
73 |
-
area_px = cv2.countNonZero(mask)
|
74 |
-
area_cm2 = area_px / (PIXELS_PER_CM ** 2)
|
75 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
76 |
if not contours:
|
77 |
-
return {"
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
depth
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
def annotate(image: np.ndarray, mask: np.ndarray, contour) -> np.ndarray:
|
97 |
-
poly_image = image.copy()
|
98 |
-
if contour is not None:
|
99 |
-
cv2.drawContours(poly_image, [contour], -1, (0, 255, 0), 2)
|
100 |
-
return poly_image
|
101 |
|
102 |
-
# --- API ---
|
103 |
@app.post("/analyze_wound")
|
104 |
async def analyze_wound(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
105 |
contents = await file.read()
|
106 |
-
|
107 |
-
|
108 |
-
if
|
109 |
-
raise HTTPException(status_code=400, detail="Invalid image")
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
metrics = calculate_metrics(mask, cropped)
|
117 |
-
full_mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
118 |
if bbox:
|
119 |
-
|
|
|
|
|
120 |
else:
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Response
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from ultralytics import YOLO
|
5 |
import tensorflow as tf
|
6 |
+
import io
|
7 |
from typing import Union
|
8 |
|
9 |
+
# --- Configuration ---
|
|
|
10 |
PIXELS_PER_CM = 50.0
|
11 |
|
12 |
+
# --- App Initialization ---
|
13 |
+
app = FastAPI(
|
14 |
+
title="Wound Analysis API",
|
15 |
+
description="An API to analyze wound images, zoom to the wound, and return an annotated image with data in headers.",
|
16 |
+
version="3.5.0" # Version updated for polygon and zoom features
|
17 |
+
)
|
18 |
|
19 |
+
# --- Model Loading ---
|
20 |
+
def load_models():
|
21 |
+
"""Loads the segmentation and YOLO models, handling potential errors."""
|
22 |
+
segmentation_model, yolo_model = None, None
|
23 |
+
try:
|
24 |
+
# Load your trained segmentation model
|
25 |
+
segmentation_model = tf.keras.models.load_model("segmentation_model.h5")
|
26 |
+
print("Segmentation model 'segmentation_model.h5' loaded successfully.")
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Warning: Could not load segmentation model. Using fallback. Error: {e}")
|
29 |
+
|
30 |
+
try:
|
31 |
+
# Load your trained YOLO model for wound detection
|
32 |
+
yolo_model = YOLO("best.pt")
|
33 |
+
print("YOLO model 'best.pt' loaded successfully.")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Warning: Could not load YOLO model. Using fallback. Error: {e}")
|
36 |
+
|
37 |
+
return segmentation_model, yolo_model
|
38 |
+
|
39 |
+
segmentation_model, yolo_model = load_models()
|
40 |
+
|
41 |
+
# --- Helper Functions ---
|
42 |
|
|
|
43 |
def preprocess_image(image: np.ndarray) -> np.ndarray:
|
44 |
+
"""Applies a series of preprocessing steps to enhance the image for analysis."""
|
45 |
+
img_denoised = cv2.medianBlur(image, 3)
|
46 |
+
lab = cv2.cvtColor(img_denoised, cv2.COLOR_BGR2LAB)
|
47 |
+
l_channel, a_channel, b_channel = cv2.split(lab)
|
48 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
49 |
+
l_clahe = clahe.apply(l_channel)
|
50 |
+
lab_clahe = cv2.merge([l_clahe, a_channel, b_channel])
|
51 |
+
img_clahe = cv2.cvtColor(lab_clahe, cv2.COLOR_LAB2BGR)
|
52 |
+
gamma = 1.2
|
53 |
+
img_float = img_clahe.astype(np.float32) / 255.0
|
54 |
+
img_gamma = np.power(img_float, gamma)
|
55 |
+
return (img_gamma * 255).astype(np.uint8)
|
56 |
|
57 |
+
def detect_wound_region_yolo(image: np.ndarray) -> Union[tuple, None]:
|
58 |
+
"""Detects the wound bounding box using the YOLO model."""
|
59 |
+
if not yolo_model: return None
|
60 |
try:
|
61 |
results = yolo_model.predict(image, verbose=False)
|
62 |
+
if results and results[0].boxes and len(results[0].boxes) > 0:
|
63 |
+
# Get the box with the highest confidence
|
64 |
best_box = sorted(results[0].boxes, key=lambda b: b.conf[0], reverse=True)[0]
|
65 |
coords = best_box.xyxy[0].cpu().numpy()
|
66 |
return tuple(map(int, coords))
|
67 |
except Exception as e:
|
68 |
+
print(f"YOLO prediction failed: {e}")
|
69 |
+
return None
|
70 |
+
|
71 |
+
def segment_wound_with_model(image: np.ndarray) -> Union[np.ndarray, None]:
|
72 |
+
"""Segments the wound from the image using the primary segmentation model."""
|
73 |
+
if not segmentation_model:
|
74 |
+
return None
|
75 |
+
try:
|
76 |
+
input_shape = segmentation_model.input_shape[1:3]
|
77 |
+
img_resized = cv2.resize(image, (input_shape[1], input_shape[0]))
|
78 |
+
img_norm = np.expand_dims(img_resized.astype(np.float32) / 255.0, axis=0)
|
79 |
+
|
80 |
+
prediction = segmentation_model.predict(img_norm, verbose=0)
|
81 |
+
|
82 |
+
# Handle nested list or Tensor output from some model versions
|
83 |
+
while isinstance(prediction, list):
|
84 |
+
prediction = prediction[0]
|
85 |
+
if isinstance(prediction, tf.Tensor):
|
86 |
+
prediction = prediction.numpy()
|
87 |
+
|
88 |
+
pred_mask = prediction[0]
|
89 |
+
pred_mask_resized = cv2.resize(pred_mask, (image.shape[1], image.shape[0]))
|
90 |
+
return (pred_mask_resized.squeeze() >= 0.5).astype(np.uint8) * 255
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Segmentation model prediction failed: {e}")
|
93 |
return None
|
94 |
|
95 |
+
def segment_wound_with_fallback(image: np.ndarray) -> np.ndarray:
|
96 |
+
"""A fallback segmentation method using k-means clustering if the primary model fails."""
|
97 |
+
pixels = image.reshape((-1, 3)).astype(np.float32)
|
98 |
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
99 |
+
_, labels, centers = cv2.kmeans(pixels, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
|
100 |
+
centers_lab = cv2.cvtColor(centers.reshape(1, -1, 3).astype(np.uint8), cv2.COLOR_BGR2LAB)[0]
|
101 |
+
wound_cluster_idx = np.argmax(centers_lab[:, 1]) # 'a' channel in LAB is good for redness
|
102 |
+
mask = (labels.reshape(image.shape[:2]) == wound_cluster_idx).astype(np.uint8) * 255
|
103 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
104 |
+
if contours:
|
105 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
106 |
+
refined_mask = np.zeros_like(mask)
|
107 |
+
cv2.drawContours(refined_mask, [largest_contour], -1, 255, cv2.FILLED)
|
108 |
+
return refined_mask
|
109 |
+
return mask
|
110 |
+
|
111 |
+
def calculate_metrics(mask: np.ndarray) -> dict:
|
112 |
+
"""Calculates dimensional and analytical metrics from the wound mask."""
|
113 |
+
wound_pixels = cv2.countNonZero(mask)
|
114 |
+
if wound_pixels == 0:
|
115 |
+
return {"area_cm2": 0.0, "length_cm": 0.0, "breadth_cm": 0.0, "depth_cm": 0.0, "moisture": 0.0}
|
116 |
+
|
117 |
+
area_cm2 = wound_pixels / (PIXELS_PER_CM ** 2)
|
118 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
120 |
if not contours:
|
121 |
+
return {"area_cm2": area_cm2, "length_cm": 0.0, "breadth_cm": 0.0, "depth_cm": 0.0, "moisture": 0.0}
|
122 |
+
|
123 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
124 |
+
(_, (width, height), _) = cv2.minAreaRect(largest_contour)
|
125 |
+
|
126 |
+
length_cm = max(width, height) / PIXELS_PER_CM
|
127 |
+
breadth_cm = min(width, height) / PIXELS_PER_CM
|
128 |
+
|
129 |
+
# Placeholder for depth and moisture calculation.
|
130 |
+
# These would typically require more advanced sensors or algorithms.
|
131 |
+
depth_cm = 0.1 # Placeholder value
|
132 |
+
moisture = 75.0 # Placeholder value
|
133 |
+
|
134 |
+
return {"area_cm2": area_cm2, "length_cm": length_cm, "breadth_cm": breadth_cm, "depth_cm": depth_cm, "moisture": moisture}
|
135 |
+
|
136 |
+
def create_visual_overlay_and_zoom(image: np.ndarray, mask: np.ndarray, bbox: tuple = None) -> np.ndarray:
|
137 |
+
"""Draws a polygon around the wound, applies a color overlay, and zooms to the region."""
|
138 |
+
annotated_img = image.copy()
|
139 |
+
|
140 |
+
# Find contours to draw the polygon
|
141 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
142 |
+
if contours:
|
143 |
+
# Draw a distinct polygon outline around the wound
|
144 |
+
cv2.drawContours(annotated_img, contours, -1, (0, 255, 255), 2) # Yellow, 2px thick
|
145 |
+
|
146 |
+
# Zoom to the wound area if a bounding box is available
|
147 |
+
if bbox:
|
148 |
+
xmin, ymin, xmax, ymax = bbox
|
149 |
+
# Add a 10% padding around the bounding box for better context
|
150 |
+
padding_x = int((xmax - xmin) * 0.10)
|
151 |
+
padding_y = int((ymax - ymin) * 0.10)
|
152 |
+
|
153 |
+
# Ensure coordinates are within image bounds
|
154 |
+
zoom_xmin = max(0, xmin - padding_x)
|
155 |
+
zoom_ymin = max(0, ymin - padding_y)
|
156 |
+
zoom_xmax = min(image.shape[1], xmax + padding_x)
|
157 |
+
zoom_ymax = min(image.shape[0], ymax + padding_y)
|
158 |
+
|
159 |
+
return annotated_img[zoom_ymin:zoom_ymax, zoom_xmin:zoom_xmax]
|
160 |
+
|
161 |
+
return annotated_img
|
162 |
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
# --- Main API Endpoint ---
|
165 |
@app.post("/analyze_wound")
|
166 |
async def analyze_wound(file: UploadFile = File(...)):
|
167 |
+
"""
|
168 |
+
Receives an image, analyzes the wound, and returns a zoomed,
|
169 |
+
annotated image with metrics in the response headers.
|
170 |
+
"""
|
171 |
contents = await file.read()
|
172 |
+
image_array = np.frombuffer(contents, np.uint8)
|
173 |
+
original_image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
174 |
+
if original_image is None:
|
175 |
+
raise HTTPException(status_code=400, detail="Invalid or corrupt image file")
|
176 |
+
|
177 |
+
processed_image = preprocess_image(original_image)
|
178 |
+
|
179 |
+
# Use YOLO to find the general wound region
|
180 |
+
bbox = detect_wound_region_yolo(processed_image)
|
181 |
+
|
|
|
|
|
182 |
if bbox:
|
183 |
+
xmin, ymin, xmax, ymax = bbox
|
184 |
+
# Crop to the detected region for more accurate segmentation
|
185 |
+
cropped_for_segmentation = processed_image[ymin:ymax, xmin:xmax]
|
186 |
else:
|
187 |
+
# If no wound is detected, analyze the whole image as a fallback
|
188 |
+
cropped_for_segmentation = processed_image
|
189 |
+
|
190 |
+
# Segment the wound within the cropped region
|
191 |
+
mask = segment_wound_with_model(cropped_for_segmentation)
|
192 |
+
if mask is None:
|
193 |
+
mask = segment_wound_with_fallback(cropped_for_segmentation)
|
194 |
+
|
195 |
+
# Calculate metrics based on the precise mask
|
196 |
+
metrics = calculate_metrics(mask)
|
197 |
|
198 |
+
# Create a full-sized mask to pass to the visualization function
|
199 |
+
full_mask = np.zeros(original_image.shape[:2], dtype=np.uint8)
|
200 |
+
if bbox:
|
201 |
+
full_mask[ymin:ymax, xmin:xmax] = mask
|
202 |
+
else:
|
203 |
+
full_mask = mask
|
204 |
+
|
205 |
+
# Generate the final visual output: draw polygon and zoom
|
206 |
+
final_image = create_visual_overlay_and_zoom(original_image, full_mask, bbox)
|
207 |
+
|
208 |
+
success, png_data = cv2.imencode(".png", final_image)
|
209 |
+
if not success:
|
210 |
+
raise HTTPException(status_code=500, detail="Failed to encode output image")
|
211 |
|
212 |
+
# Set the custom headers as requested
|
213 |
+
headers = {
|
214 |
+
'X-Length-Cm': f"{metrics['length_cm']:.2f}",
|
215 |
+
'X-Breadth-Cm': f"{metrics['breadth_cm']:.2f}",
|
216 |
+
'X-Depth-Cm': f"{metrics['depth_cm']:.2f}",
|
217 |
+
'X-Area-Cm2': f"{metrics['area_cm2']:.2f}",
|
218 |
+
'X-Moisture': f"{metrics['moisture']:.1f}"
|
219 |
+
}
|
220 |
+
|
221 |
+
return Response(content=png_data.tobytes(), media_type="image/png", headers=headers)
|