Ar4ikov's picture
Update app.py
2952de2
from transformers import pipeline
import gradio as gr
from pyctcdecode import BeamSearchDecoderCTC
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor
import librosa
import numpy as np
import subprocess
import time
TRUST = True
SR = 16000
def resample(speech_array, sampling_rate):
speech = torch.from_numpy(speech_array)
print(speech, speech.shape, sampling_rate)
resampler = torchaudio.transforms.Resample(sampling_rate)
speech = resampler(speech).squeeze().numpy()
return speech
def predict(speech_array, sampling_rate):
speech = resample(speech_array, sampling_rate)
print(speech, speech.shape)
inputs = feature_extractor(speech, sampling_rate=SR, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model.to(device)(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = {config.id2label[i]: round(float(score), 3) for i, score in enumerate(scores)}
return outputs
config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST)
model = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
def recognize(audio):
sr, audio_array = audio
audio_array = audio_array.astype(np.float32)
state = predict(audio_array, sr)
return state
def test_some(audio):
sr, audio_array = audio
audio_array = audio_array.astype(np.float32)
return (sr, audio_array)
interface = gr.Interface(
fn=recognize,
inputs=[
gr.Audio(source="microphone", label="Скажите что-нибудь...")
],
outputs=[
gr.Label(num_top_classes=7)
],
live=False
)
gr.TabbedInterface([interface], ["Russian Emotion Recognition"]).launch(debug=True)