Spaces:
Build error
Build error
from transformers import pipeline | |
import gradio as gr | |
from pyctcdecode import BeamSearchDecoderCTC | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchaudio | |
from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor | |
import librosa | |
import numpy as np | |
import subprocess | |
import time | |
TRUST = True | |
SR = 16000 | |
def resample(speech_array, sampling_rate): | |
speech = torch.from_numpy(speech_array) | |
print(speech, speech.shape, sampling_rate) | |
resampler = torchaudio.transforms.Resample(sampling_rate) | |
speech = resampler(speech).squeeze().numpy() | |
return speech | |
def predict(speech_array, sampling_rate): | |
speech = resample(speech_array, sampling_rate) | |
print(speech, speech.shape) | |
inputs = feature_extractor(speech, sampling_rate=SR, return_tensors="pt", padding=True) | |
inputs = {key: inputs[key].to(device) for key in inputs} | |
with torch.no_grad(): | |
logits = model.to(device)(**inputs).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = {config.id2label[i]: round(float(score), 3) for i, score in enumerate(scores)} | |
return outputs | |
config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) | |
model = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(device) | |
def recognize(audio): | |
sr, audio_array = audio | |
audio_array = audio_array.astype(np.float32) | |
state = predict(audio_array, sr) | |
return state | |
def test_some(audio): | |
sr, audio_array = audio | |
audio_array = audio_array.astype(np.float32) | |
return (sr, audio_array) | |
interface = gr.Interface( | |
fn=recognize, | |
inputs=[ | |
gr.Audio(source="microphone", label="Скажите что-нибудь...") | |
], | |
outputs=[ | |
gr.Label(num_top_classes=7) | |
], | |
live=False | |
) | |
gr.TabbedInterface([interface], ["Russian Emotion Recognition"]).launch(debug=True) |