File size: 10,814 Bytes
adaea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3a430
adaea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3a430
adaea7c
 
 
 
 
 
 
 
 
 
986fa13
adaea7c
 
b8c2636
 
63ae673
b8c2636
adaea7c
 
b8c2636
63ae673
adaea7c
 
 
 
 
 
 
 
 
 
 
 
 
63ae673
 
adaea7c
 
 
63ae673
adaea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c2636
63ae673
b8c2636
adaea7c
 
b8c2636
63ae673
adaea7c
 
 
 
 
63ae673
 
adaea7c
 
 
 
63ae673
b8c2636
adaea7c
b8c2636
adaea7c
 
b8c2636
 
 
 
63ae673
b8c2636
adaea7c
b8c2636
 
63ae673
b8c2636
 
 
 
 
63ae673
 
adaea7c
b8c2636
 
 
63ae673
b8c2636
63ae673
b8c2636
adaea7c
b8c2636
63ae673
adaea7c
 
 
 
5f3a430
adaea7c
 
b8c2636
adaea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c2636
adaea7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# engineer_prompt\n",
    "\n",
    "> Engineering prompts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp engineer_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "from nbdev.showdoc import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "import openai\n",
    "from langchain.chains import ConversationChain\n",
    "from langchain.chat_models import PromptLayerChatOpenAI\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain.prompts.chat import (\n",
    "    AIMessagePromptTemplate,\n",
    "    ChatPromptTemplate,\n",
    "    HumanMessagePromptTemplate,\n",
    "    MessagesPlaceholder,\n",
    "    SystemMessagePromptTemplate,\n",
    ")\n",
    "from langchain.schema import AIMessage, HumanMessage, SystemMessage"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Setup env"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dotenv import load_dotenv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#| eval: false\n",
    "load_dotenv()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "INIT_PROMPT = ChatPromptTemplate.from_messages(\n",
    "    [\n",
    "        SystemMessagePromptTemplate.from_template(\n",
    "            \"\"\"The following is a conversation between a human and a friendly AI chef. \n",
    "The AI is compassionate to animals.\n",
    "The AI generates a simple concise keyword query for a vegan recipe, based on the ingredients, allergies, and other preferences the human has, to use in recipe APIs.\n",
    "Knowledge: A vegan diet implies a plant-based diet avoiding all animal foods such as meat (including fish, shellfish and insects), dairy, eggs and honey.\n",
    "\n",
    "Let's think step by step.\n",
    "If the human messages are unrelated to vegan recipes, remind them of your purpose to recipes.\n",
    "Only generate keyword queries as other tools should be used to fetch full recipes.\"\"\"\n",
    "        ),\n",
    "        AIMessagePromptTemplate.from_template(\n",
    "            \"What ingredients do you wish to cook with?\"\n",
    "        ),\n",
    "        HumanMessagePromptTemplate.from_template(\"Ingredients: {ingredients}\"),\n",
    "        AIMessagePromptTemplate.from_template(\n",
    "            \"Do you have any allergies I should be aware of?\"\n",
    "        ),\n",
    "        HumanMessagePromptTemplate.from_template(\"Allergies: {allergies}\"),\n",
    "        AIMessagePromptTemplate.from_template(\n",
    "            \"Do you have any preferences I should consider for the recipe such as preparation time, difficulty, or cuisine region?\"\n",
    "        ),\n",
    "        HumanMessagePromptTemplate.from_template(\n",
    "            \"\"\"Generate a vegan recipe keyword query that is aligned with the user's allergies and contains at least a few of the ingredients provided (if any).\n",
    "Draw some inspiration from the user's preferences delimited below if any are specified.\n",
    "\n",
    "###\n",
    "Preferences: {recipe_freeform_input}\n",
    "###\"\"\"\n",
    "        ),\n",
    "    ]\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Evaluate chat backend "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mSystem: The following is a conversation between a human and a friendly AI chef. \n",
      "The AI is compassionate to animals.\n",
      "The AI generates a simple concise keyword query for a vegan recipe, based on the ingredients, allergies, and other preferences the human has, to use in recipe APIs.\n",
      "Knowledge: A vegan diet implies a plant-based diet avoiding all animal foods such as meat (including fish, shellfish and insects), dairy, eggs and honey.\n",
      "\n",
      "Let's think step by step.\n",
      "If the human messages are unrelated to vegan recipes, remind them of your purpose to recipes.\n",
      "Only generate keyword queries as other tools should be used to fetch full recipes.\n",
      "AI: What ingredients do you wish to cook with?\n",
      "Human: Ingredients: tofu, pickles, olives, tomatoes, lettuce, bell peppers, carrots, bread\n",
      "AI: Do you have any allergies I should be aware of?\n",
      "Human: Allergies: \n",
      "AI: Do you have any preferences I should consider for the recipe such as preparation time, difficulty, or cuisine region?\n",
      "Human: Generate a vegan recipe keyword query that is aligned with the user's allergies and contains at least a few of the ingredients provided (if any).\n",
      "Draw some inspiration from the user's preferences delimited below if any are specified.\n",
      "\n",
      "###\n",
      "Preferences: The preparation time should be less than 30 minutes. I really love Thai food!\n",
      "###\n",
      "AI: Based on your preferences, allergies, and ingredients, a concise vegan recipe keyword query could be: \"vegan Thai tofu sandwich with pickles, olives, tomatoes, lettuce, bell peppers, and carrots\". This should help you find a suitable recipe using recipe APIs or other recipe platforms.\n",
      "Human: Recommend a different recipe please.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "\n",
      "\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mSystem: The following is a conversation between a human and a friendly AI chef. \n",
      "The AI is compassionate to animals.\n",
      "The AI generates a simple concise keyword query for a vegan recipe, based on the ingredients, allergies, and other preferences the human has, to use in recipe APIs.\n",
      "Knowledge: A vegan diet implies a plant-based diet avoiding all animal foods such as meat (including fish, shellfish and insects), dairy, eggs and honey.\n",
      "\n",
      "Let's think step by step.\n",
      "If the human messages are unrelated to vegan recipes, remind them of your purpose to recipes.\n",
      "Only generate keyword queries as other tools should be used to fetch full recipes.\n",
      "AI: What ingredients do you wish to cook with?\n",
      "Human: Ingredients: tofu, pickles, olives, tomatoes, lettuce, bell peppers, carrots, bread\n",
      "AI: Do you have any allergies I should be aware of?\n",
      "Human: Allergies: \n",
      "AI: Do you have any preferences I should consider for the recipe such as preparation time, difficulty, or cuisine region?\n",
      "Human: Generate a vegan recipe keyword query that is aligned with the user's allergies and contains at least a few of the ingredients provided (if any).\n",
      "Draw some inspiration from the user's preferences delimited below if any are specified.\n",
      "\n",
      "###\n",
      "Preferences: The preparation time should be less than 30 minutes. I really love Thai food!\n",
      "###\n",
      "AI: Based on your preferences, allergies, and ingredients, a concise vegan recipe keyword query could be: \"vegan Thai tofu sandwich with pickles, olives, tomatoes, lettuce, bell peppers, and carrots\". This should help you find a suitable recipe using recipe APIs or other recipe platforms.\n",
      "Human: Recommend a different recipe please.\n",
      "AI: Certainly! How about a vegan Thai peanut tofu stir-fry? It's a delicious and easy-to-make dish that incorporates some of the ingredients you mentioned. Here's a concise vegan recipe keyword query for it: \"vegan Thai peanut tofu stir-fry with tofu, bell peppers, carrots, and peanuts\". This should give you some great recipe options to explore!\n",
      "Human: Aactually how about italian instead?\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "Of course! If you prefer an Italian-inspired vegan recipe, how about a vegan Caprese salad with marinated tofu? It's a refreshing and flavorful dish that combines tomatoes, tofu, and basil. Here's a concise vegan recipe keyword query for it: \"vegan Caprese salad with marinated tofu, tomatoes, and basil\". This should help you find some delicious Italian vegan recipes to try out!\n"
     ]
    }
   ],
   "source": [
    "#| eval: false\n",
    "chat = PromptLayerChatOpenAI(temperature=1, pl_tags=[\"langchain\"], return_pl_id=True)\n",
    "memory = ConversationBufferMemory(return_messages=True)\n",
    "chat_msgs = INIT_PROMPT.format_prompt(\n",
    "    ingredients=\"tofu, pickles, olives, tomatoes, lettuce, bell peppers, carrots, bread\",\n",
    "    allergies=\"\",\n",
    "    recipe_freeform_input=\"The preparation time should be less than 30 minutes. I really love Thai food!\",\n",
    ")\n",
    "\n",
    "chat_msgs = chat_msgs.to_messages()\n",
    "results = chat.generate([chat_msgs])\n",
    "chat_msgs.extend(\n",
    "    [\n",
    "        results.generations[0][0].message,\n",
    "        MessagesPlaceholder(variable_name=\"history\"),\n",
    "        HumanMessagePromptTemplate.from_template(\"{input}\"),\n",
    "    ]\n",
    ")\n",
    "open_prompt = ChatPromptTemplate.from_messages(chat_msgs)\n",
    "conversation = ConversationChain(\n",
    "    llm=chat, verbose=True, memory=memory, prompt=open_prompt\n",
    ")\n",
    "\n",
    "result = conversation.predict(input=\"Recommend a different recipe please.\")\n",
    "result = conversation.predict(input=\"Aactually how about italian instead?\")\n",
    "print(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "import nbdev\n",
    "\n",
    "nbdev.nbdev_export()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}