Spaces:
Sleeping
Sleeping
File size: 12,183 Bytes
adaea7c 6b5c559 986fa13 adaea7c 986fa13 cf2b422 63ae673 cf2b422 63ae673 2ffe248 cf2b422 63ae673 cf2b422 63ae673 cf2b422 63ae673 cf2b422 63ae673 cf2b422 986fa13 adaea7c 63ae673 cf2b422 63ae673 cf2b422 63ae673 33d21bf cf2b422 33d21bf cf2b422 33d21bf 63ae673 cf2b422 63ae673 cf2b422 63ae673 cf2b422 33d21bf cf2b422 33d21bf cf2b422 33d21bf cf2b422 986fa13 cf2b422 33d21bf adaea7c cf2b422 33d21bf cf2b422 33d21bf cf2b422 adaea7c cf2b422 adaea7c cf2b422 adaea7c cf2b422 986fa13 cf2b422 986fa13 cf2b422 986fa13 cf2b422 986fa13 2ffe248 cf2b422 2ffe248 cf2b422 2ffe248 986fa13 adaea7c cf2b422 adaea7c cf2b422 adaea7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# app\n",
"\n",
"> Gradio app.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| default_exp app"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"from nbdev.showdoc import *"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | export\n",
"import copy\n",
"import os\n",
"import gradio as gr\n",
"import constants\n",
"from lv_recipe_chatbot.vegan_recipe_assistant import (\n",
" SYSTEM_PROMPT,\n",
" vegan_recipe_edamam_search,\n",
" VEGAN_RECIPE_SEARCH_TOOL_SCHEMA,\n",
")\n",
"from openai import OpenAI, AssistantEventHandler\n",
"from typing_extensions import override\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"import time\n",
"from dotenv import load_dotenv"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#: eval: false\n",
"load_dotenv()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Need an even handler to send the streaming output to the Gradio app \n",
"[GPT4 streaming output example on hugging face 🤗](https://huggingface.co/spaces/ysharma/ChatGPT4/blob/main/app.pyhttps://huggingface.co/spaces/ysharma/ChatGPT4/blob/main/app.py) \n",
"[Gradio lite let's you insert Gradio app in browser JS](https://www.gradio.app/guides/gradio-litehttps://www.gradio.app/guides/gradio-lite) \n",
"[Streaming output](https://www.gradio.app/main/guides/streaming-outputshttps://www.gradio.app/main/guides/streaming-outputs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class EventHandler(AssistantEventHandler):\n",
" def __init__(self, handle_text_delta):\n",
" self.handle_text_delta = handle_text_delta\n",
"\n",
" @override\n",
" def on_text_delta(self, delta, snapshot):\n",
" self.handle_text_delta(delta.value)\n",
"\n",
" @override\n",
" def on_event(self, event):\n",
" # Retrieve events that are denoted with 'requires_action'\n",
" # since these will have our tool_calls\n",
" if event.event == \"thread.run.requires_action\":\n",
" run_id = event.data.id # Retrieve the run ID from the event data\n",
" self.handle_requires_action(event.data, run_id)\n",
"\n",
" def handle_requires_action(self, data, run_id):\n",
" tool_outputs = []\n",
" for tool_call in data.required_action.submit_tool_outputs.tool_calls:\n",
" if tool_call.function.name == \"vegan_recipe_edamam_search\":\n",
" fn_args = json.loads(tool_call.function.arguments)\n",
" data = vegan_recipe_edamam_search(\n",
" query=fn_args.get(\"query\"),\n",
" )\n",
" tool_outputs.append({\"tool_call_id\": tool_call.id, \"output\": data})\n",
"\n",
" self.submit_tool_outputs(tool_outputs, run_id)\n",
"\n",
" def submit_tool_outputs(self, tool_outputs, run_id):\n",
" with client.beta.threads.runs.submit_tool_outputs_stream(\n",
" thread_id=self.current_run.thread_id,\n",
" run_id=self.current_run.id,\n",
" tool_outputs=tool_outputs,\n",
" event_handler=EventHandler(),\n",
" ) as stream:\n",
" for text in stream.until_:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = OpenAI()\n",
"assistant = client.beta.assistants.create(\n",
" name=\"Vegan Recipe Finder\",\n",
" instructions=SYSTEM_PROMPT\n",
" + \"\\nChoose the best single matching recipe to the user's query out of the vegan recipe search returned recipes\",\n",
" model=\"gpt-4o\",\n",
" tools=[VEGAN_RECIPE_SEARCH_TOOL_SCHEMA],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def run_conversation() -> str:\n",
" run = client.beta.threads.runs.create_and_poll(\n",
" thread_id=thread.id,\n",
" assistant_id=assistant.id,\n",
" )\n",
" while True:\n",
" tool_outputs = []\n",
" tool_calls = (\n",
" []\n",
" if not run.required_action\n",
" else run.required_action.submit_tool_outputs.tool_calls\n",
" )\n",
"\n",
" for tool_call in tool_calls:\n",
" if tool_call.function.name == \"vegan_recipe_edamam_search\":\n",
" fn_args = json.loads(tool_call.function.arguments)\n",
" data = vegan_recipe_edamam_search(\n",
" query=fn_args.get(\"query\"),\n",
" )\n",
" tool_outputs.append({\"tool_call_id\": tool_call.id, \"output\": data})\n",
"\n",
" if tool_outputs:\n",
" try:\n",
" run = client.beta.threads.runs.submit_tool_outputs_and_poll(\n",
" thread_id=thread.id,\n",
" run_id=run.id,\n",
" tool_outputs=tool_outputs,\n",
" )\n",
" print(\"Tool outputs submitted successfully.\")\n",
"\n",
" except Exception as e:\n",
" print(\"Failed to submit tool outputs:\", e)\n",
" return \"Sorry failed to run tools. Try again with a different query.\"\n",
"\n",
" if run.status == \"completed\":\n",
" messages = client.beta.threads.messages.list(thread_id=thread.id)\n",
" data = messages.data\n",
" content = data[0].content\n",
" return content[0].text.value\n",
" time.sleep(0.05)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closing server running on port: 7860\n",
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tool outputs submitted successfully.\n",
"Tool outputs submitted successfully.\n",
"Tool outputs submitted successfully.\n",
"Tool outputs submitted successfully.\n",
"Tool outputs submitted successfully.\n",
"Tool outputs submitted successfully.\n"
]
}
],
"source": [
"# https://www.gradio.app/main/guides/creating-a-chatbot-fast#customizing-your-chatbot\n",
"\n",
"\n",
"# on chatbot start/ first msg after clear\n",
"thread = client.beta.threads.create()\n",
"\n",
"\n",
"def predict(message, history):\n",
" # if msg no new file handle it as such\n",
" # note that history is a flat list of text messages\n",
" txt = message[\"text\"]\n",
" if txt:\n",
" client.beta.threads.messages.create(\n",
" thread_id=thread.id,\n",
" role=\"user\",\n",
" content=txt,\n",
" )\n",
" files = message[\"files\"]\n",
" # files is only from the last message rather than all historically submitted files\n",
" if files:\n",
" # files[-1].split(\".\")[-1] in [\"jpg\", \"png\", \"jpeg\", \"webp\"]:\n",
" file = message[\"files\"][-1]\n",
" file = client.files.create(\n",
" file=open(\n",
" file,\n",
" \"rb\",\n",
" ),\n",
" purpose=\"vision\",\n",
" )\n",
" client.beta.threads.messages.create(\n",
" thread_id=thread.id,\n",
" content=[\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"What vegan ingredients do you see in this image?\",\n",
" },\n",
" {\"type\": \"image_file\", \"image_file\": {\"file_id\": file.id}},\n",
" ],\n",
" role=\"user\",\n",
" )\n",
" return run_conversation()\n",
"\n",
"\n",
"# print(predict({\"text\": \"yo\", \"files\": []}, []))\n",
"# print(predict({\"text\": \"suggest a tofu and greens recipe please\", \"files\": []}, []))\n",
"# print(predict({\"text\": \"burger\", \"files\": []}, []))\n",
"if \"demo\" in globals():\n",
" demo.close()\n",
"\n",
"demo = gr.ChatInterface(fn=predict, multimodal=True)\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"skip\n"
]
}
],
"source": [
"def create_demo():\n",
" # sample_images = []\n",
" # all_imgs = [f\"{SAMPLE_IMG_DIR}/{img}\" for img in os.listdir(SAMPLE_IMG_DIR)]\n",
" # for i, img in enumerate(all_imgs):\n",
" # if i in [\n",
" # 1,\n",
" # 2,\n",
" # 3,\n",
" # ]:\n",
" # sample_images.append(img)\n",
" with gr.ChatInterface() as demo:\n",
" # gr_img = gr.Image(type=\"filepath\")\n",
" # btn = gr.Button(value=\"Submit image\")\n",
" # ingredients_msg = gr.Text(label=\"Ingredients from image\")\n",
" # btn.click(bot.run_img, inputs=[gr_img], outputs=[ingredients_msg])\n",
" # gr.Examples(\n",
" # examples=sample_images,\n",
" # inputs=gr_img,\n",
" # )\n",
"\n",
" chatbot = gr.Chatbot(value=[(None,)])\n",
"\n",
" msg = gr.Textbox()\n",
" gr.Markdown(\n",
" \"\"\"**🔃Refresh the page to start from scratch🔃** \n",
" \n",
" Recipe search tool powered by the [Edamam API](https://www.edamam.com/) \n",
" \n",
" \"\"\"\n",
" )\n",
" msg.submit(\n",
" fn=bot.respond, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False\n",
" )\n",
" # clear.click(lambda: None, None, chatbot, queue=False).then(bot.reset)\n",
" return demo"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"import nbdev\n",
"\n",
"nbdev.nbdev_export()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "local-lv-chatbot",
"language": "python",
"name": "local-lv-chatbot"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|