Anish13 commited on
Commit
ddbd144
·
1 Parent(s): 22f572e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -3
app.py CHANGED
@@ -1,7 +1,187 @@
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  iface.launch()
 
1
  import gradio as gr
2
 
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
 
7
+ batch_size = 64 # how many independent sequences will we process in parallel?
8
+ block_size = 256 # what is the maximum context length for predictions?
9
+ max_iters = 5000
10
+ eval_interval = 500
11
+ learning_rate = 3e-4
12
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
13
+ print(f"The code is running on {device} : GPU={torch.cuda.get_device_name(0)}")
14
+ eval_iters = 200
15
+ n_embd = 384
16
+ n_head = 6
17
+ n_layer = 6
18
+ dropout = 0.2
19
+
20
+
21
+ torch.manual_seed(1337)
22
+
23
+ # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
24
+ with open('input.txt', 'r', encoding='utf-8') as f:
25
+ text = f.read()
26
+
27
+ # here are all the unique characters that occur in this text
28
+ chars = sorted(list(set(text)))
29
+ vocab_size = len(chars)
30
+ # create a mapping from characters to integers
31
+ stoi = { ch:i for i,ch in enumerate(chars) }
32
+ itos = { i:ch for i,ch in enumerate(chars) }
33
+ encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
34
+ decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
35
+
36
+
37
+ class Head(nn.Module):
38
+ """ one head of self-attention """
39
+
40
+ def __init__(self, head_size):
41
+ super().__init__()
42
+ self.key = nn.Linear(n_embd, head_size, bias=False)
43
+ self.query = nn.Linear(n_embd, head_size, bias=False)
44
+ self.value = nn.Linear(n_embd, head_size, bias=False)
45
+ self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) # create lower triangular matrix
46
+
47
+ self.dropout = nn.Dropout(dropout)
48
+
49
+ def forward(self, x):
50
+ B,T,C = x.shape
51
+ k = self.key(x) # B, T, C
52
+ q = self.query(x) # B, T, C
53
+ # compute attention scores = ("affinities")
54
+ wei = q @ k.transpose(-2, -1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
55
+ #wei = wei.masked_fill(self.tril[:T, :T]==0, float('-inf')) # (B, T, T)
56
+ tril = torch.tril(torch.ones(T, T)).to(device)
57
+ wei = wei.masked_fill(tril == 0, float('-inf'))
58
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
59
+ wei = self.dropout(wei)
60
+ # perform the weighted aggregation of the values
61
+ v = self.value(x) # (B, T, C)
62
+ out = wei @ v
63
+ return out
64
+
65
+
66
+ class MultiHeadAttention(nn.Module):
67
+ """ multiple heads of self-attention in parallel """
68
+
69
+ def __init__(self, num_heads, head_size):
70
+ super().__init__()
71
+ self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
72
+ self.proj = nn.Linear(n_embd, n_embd)
73
+ self.dropout = nn.Dropout(dropout)
74
+
75
+ def forward(self, x):
76
+ out = torch.cat([h(x) for h in self.heads], dim=-1) # h(x) call forward function is Head class
77
+ out = self.dropout(self.proj(out))
78
+ return out
79
+
80
+ class FeedForward(nn.Module): # per token level, every token does this independently, its allowing tokens to think on data provided by self attention
81
+ """ a simple linear layer followed by a non-linearity"""
82
+
83
+ def __init__(self, n_embd):
84
+ super().__init__()
85
+ self.net = nn.Sequential(
86
+ nn.Linear(n_embd, 4 * n_embd), # we multiply by 4 cause the paper says so
87
+ nn.ReLU(),
88
+ nn.Linear(4 * n_embd, n_embd),
89
+ nn.Dropout(dropout)
90
+ )
91
+
92
+ def forward(self, x):
93
+ return self.net(x)
94
+
95
+ class Block(nn.Module):
96
+ """Transformer block: communication followed by computation """
97
+
98
+ def __init__(self, n_embed, n_head):
99
+ # n_embd: embedding dimension, n_head: the number of heads we'd like
100
+ super().__init__()
101
+ head_size = n_embd // n_head
102
+ self.sa = MultiHeadAttention(n_head, head_size)
103
+ self.ffwd = FeedForward(n_embd)
104
+ self.ln1 = nn.LayerNorm(n_embd)
105
+ self.ln2 = nn.LayerNorm(n_embd)
106
+
107
+ def forward(self, x):
108
+ x = x + self.sa(self.ln1(x)) # x = x + self .. is residual connection
109
+ x = x + self.ffwd(self.ln2(x))
110
+ return x
111
+
112
+
113
+ class BigramLanguageModel(nn.Module):
114
+
115
+ def __init__(self):
116
+ super().__init__()
117
+ # each token directly reads off the logits for the next token from a lookup table
118
+ self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
119
+ self.position_embedding_table = nn.Embedding(block_size, n_embd) # so each position from 0 to block_size - 1 will also get its own embedding vector
120
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
121
+ self.ln_f = nn.LayerNorm(n_embd) # final layer Norm
122
+ self.lm_head = nn.Linear(n_embd, vocab_size)
123
+
124
+ def forward(self, idx, targets=None):
125
+ B, T = idx.shape
126
+
127
+ # idx and targets are both (B,T) tensor of integers
128
+ tok_emb = self.token_embedding_table(idx) # (B,T,C=n_embed)
129
+ pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T, C)
130
+ # pos_emb tensor will be a (block_size, n_emb) tensor # block_size is max context length for predictions
131
+ # each row represents the embedding vector for the corresponding position
132
+ # so 0th row will represent the vector for 0th position
133
+ x = tok_emb + pos_emb # (B, T, C)
134
+ x = self.blocks(x) # (B, T, C)
135
+ logits = self.lm_head(x) # (B, T, C=vocab_size)
136
+
137
+ if targets is None:
138
+ loss = None
139
+ else:
140
+ B, T, C = logits.shape
141
+ logits = logits.view(B*T, C)
142
+ targets = targets.view(B*T)
143
+ loss = F.cross_entropy(logits, targets)
144
+
145
+ return logits, loss
146
+
147
+ def generate(self, idx, max_new_tokens):
148
+ # idx is (B, T) array of indices in the current context
149
+ for _ in range(max_new_tokens):
150
+ # crop idx to the last block_size tokens
151
+ idx_cond = idx[:, -block_size:]
152
+ # get the predictions
153
+ logits, loss = self.forward(idx_cond)
154
+ # focus only on the last time step
155
+ logits = logits[:, -1, :] # becomes (B, C)
156
+ # apply softmax to get probabilities
157
+ probs = F.softmax(logits, dim=-1) # (B, C)
158
+ # sample from the distribution
159
+ idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
160
+ # append sampled index to the running sequence
161
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
162
+ return idx
163
+
164
+
165
+ # Instantiate the model
166
+ model = BigramLanguageModel()
167
+
168
+ # Specify the path to the pre-trained model checkpoint
169
+ checkpoint_path = 'checkpoint.pth'
170
+
171
+ # Load the model checkpoint
172
+ checkpoint = torch.load(checkpoint_path)
173
+ model.load_state_dict(checkpoint['model_state_dict'])
174
+ model.eval()
175
+ model.to(device)
176
+
177
+
178
+ # generate from the model
179
+ context = torch.zeros((1, 1), dtype=torch.long, device=device)
180
+
181
+ def greet(start_character, number_of_tokens):
182
+ context[0][0] = encode(start_character)
183
+ max_new_tokens = number_of_tokens
184
+ return decode(model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())
185
+
186
+ iface = gr.Interface(fn=greet, inputs=["text", "number"], outputs="text")
187
  iface.launch()