Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,19 +1,24 @@
|
|
1 |
from google.colab import drive
|
2 |
drive.mount('/content/drive')
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Emotion Detection (Using Text Dataset)
|
8 |
!pip install --upgrade numpy tensorflow transformers TTS
|
9 |
|
|
|
|
|
10 |
from transformers import pipeline
|
11 |
|
12 |
-
#
|
13 |
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
14 |
|
15 |
def detect_emotion(text):
|
16 |
-
# Ensure the emotion_classifier is used properly
|
17 |
result = emotion_classifier(text)
|
18 |
emotion = result[0]['label']
|
19 |
confidence = result[0]['score']
|
@@ -24,7 +29,8 @@ text = "I am feeling excited today!"
|
|
24 |
emotion, confidence = detect_emotion(text)
|
25 |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
26 |
|
27 |
-
|
|
|
28 |
import torch
|
29 |
import librosa
|
30 |
import numpy as np
|
@@ -33,14 +39,7 @@ from TTS.api import TTS # Using Coqui TTS for simplicity
|
|
33 |
# Load TTS model and vocoder automatically during initialization
|
34 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
35 |
|
36 |
-
# HiFi-GAN Vocoder (Ensure you have the model or download it)
|
37 |
-
from TTS.utils.generic_utils import download_model
|
38 |
-
from TTS.vocoder.hifigan import HIFIGAN
|
39 |
-
|
40 |
-
vocoder_model = download_model("hifigan_ljspeech")
|
41 |
-
vocoder = HIFIGAN(vocoder_model)
|
42 |
|
43 |
-
# Emotion-specific settings for pitch, speed, and prosody
|
44 |
emotion_settings = {
|
45 |
"neutral": {"pitch": 1.0, "speed": 1.0, "prosody": 0.5}, # Neutral tone
|
46 |
"joy": {"pitch": 1.3, "speed": 1.2, "prosody": 1.5}, # Upbeat, energetic
|
@@ -52,18 +51,29 @@ emotion_settings = {
|
|
52 |
"shame": {"pitch": 0.8, "speed": 0.85, "prosody": 0.5}, # Quiet, subdued tone
|
53 |
}
|
54 |
|
55 |
-
def adjust_pitch_and_speed(audio_path, pitch_factor, speed_factor):
|
56 |
-
# Load audio file
|
57 |
-
y, sr = librosa.load(audio_path)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Adjust pitch
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Save the adjusted audio
|
66 |
-
sf.write(audio_path,
|
|
|
|
|
67 |
|
68 |
def generate_emotional_speech(text, emotion):
|
69 |
# Retrieve pitch, speed, and prosody based on detected emotion
|
@@ -101,9 +111,12 @@ def emotion_aware_tts_pipeline(text):
|
|
101 |
# Example usage
|
102 |
emotion_aware_tts_pipeline("I can’t stooop smiiiling, everything feels perrrfect!")
|
103 |
|
104 |
-
|
|
|
105 |
import os
|
106 |
os.environ["WANDB_DISABLED"] = "true"
|
|
|
|
|
107 |
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
108 |
from datasets import load_dataset
|
109 |
|
@@ -115,6 +128,9 @@ tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncas
|
|
115 |
|
116 |
# Define a function to map emotion labels to integers
|
117 |
def map_emotion_to_int(example):
|
|
|
|
|
|
|
118 |
emotion_mapping = {
|
119 |
"neutral": 0,
|
120 |
"joy": 1,
|
@@ -125,18 +141,27 @@ def map_emotion_to_int(example):
|
|
125 |
"disgust": 6,
|
126 |
"shame": 7,
|
127 |
}
|
128 |
-
|
|
|
|
|
129 |
return example
|
130 |
|
|
|
131 |
def preprocess_data(example):
|
132 |
-
return tokenizer(example['text'], truncation=True, padding=True, max_length=512)
|
|
|
133 |
|
134 |
# Apply emotion mapping before tokenization
|
135 |
dataset = dataset.map(map_emotion_to_int, batched=False)
|
136 |
-
|
|
|
|
|
137 |
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text'])
|
138 |
|
139 |
# Load model
|
|
|
|
|
|
|
140 |
model = AutoModelForSequenceClassification.from_pretrained(
|
141 |
"bhadresh-savani/distilbert-base-uncased-emotion",
|
142 |
num_labels=8,
|
@@ -145,24 +170,25 @@ model = AutoModelForSequenceClassification.from_pretrained(
|
|
145 |
|
146 |
# Training arguments
|
147 |
training_args = TrainingArguments(
|
148 |
-
output_dir="./results",
|
149 |
-
evaluation_strategy="epoch",
|
150 |
-
learning_rate=5e-5,
|
151 |
-
per_device_train_batch_size=16,
|
152 |
-
gradient_accumulation_steps=4,
|
153 |
-
num_train_epochs=5,
|
154 |
-
weight_decay=0.01,
|
155 |
-
save_strategy="epoch",
|
156 |
-
logging_dir="./logs",
|
157 |
-
logging_steps=100,
|
158 |
-
warmup_steps=500,
|
159 |
-
save_total_limit=3,
|
160 |
-
fp16=True,
|
161 |
-
load_best_model_at_end=True,
|
162 |
-
metric_for_best_model="eval_loss",
|
163 |
-
greater_is_better=False,
|
164 |
)
|
165 |
|
|
|
166 |
# Train model
|
167 |
trainer = Trainer(
|
168 |
model=model,
|
@@ -174,15 +200,18 @@ trainer = Trainer(
|
|
174 |
|
175 |
trainer.train()
|
176 |
|
177 |
-
# Save the model and tokenizer
|
178 |
model_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
179 |
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
|
|
|
|
180 |
model.save_pretrained(model_save_path)
|
181 |
tokenizer.save_pretrained(tokenizer_save_path)
|
182 |
|
183 |
print("Model and tokenizer saved to Google Drive.")
|
184 |
|
185 |
-
|
|
|
186 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
187 |
|
188 |
# Mount Google Drive
|
@@ -199,7 +228,8 @@ tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
|
199 |
|
200 |
print("Fine-tuned model and tokenizer loaded successfully.")
|
201 |
|
202 |
-
|
|
|
203 |
from transformers import pipeline
|
204 |
|
205 |
# Create a text classification pipeline with the loaded model
|
@@ -210,10 +240,62 @@ text = "I feel so upset today!"
|
|
210 |
result = emotion_classifier(text)
|
211 |
print(result)
|
212 |
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
|
|
|
217 |
try:
|
218 |
# Get text from input or file
|
219 |
if file_input:
|
@@ -233,11 +315,9 @@ def emotion_aware_tts_pipeline_gradio(input_text=None, file_input=None):
|
|
233 |
|
234 |
# Generate audio
|
235 |
audio_path = "output.wav"
|
236 |
-
|
237 |
-
|
238 |
|
239 |
-
# Post-processing: adjust pitch and speed
|
240 |
-
adjust_pitch_and_speed(audio_path, pitch_factor=pitch, speed_factor=speed)
|
241 |
|
242 |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
243 |
else:
|
@@ -245,9 +325,11 @@ def emotion_aware_tts_pipeline_gradio(input_text=None, file_input=None):
|
|
245 |
except Exception as e:
|
246 |
return f"Error: {str(e)}", None
|
247 |
|
|
|
|
|
248 |
# Define Gradio interface
|
249 |
iface = gr.Interface(
|
250 |
-
fn=
|
251 |
inputs=[
|
252 |
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
253 |
gr.File(label="Upload a Text File")
|
|
|
1 |
from google.colab import drive
|
2 |
drive.mount('/content/drive')
|
3 |
|
4 |
+
"""Install Dependencies"""
|
5 |
+
|
6 |
+
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
|
7 |
+
|
8 |
+
"""Emotion Detection (Using Text Dataset)
|
9 |
+
|
10 |
+
"""
|
11 |
|
|
|
12 |
!pip install --upgrade numpy tensorflow transformers TTS
|
13 |
|
14 |
+
!pip freeze > requirements.txt
|
15 |
+
|
16 |
from transformers import pipeline
|
17 |
|
18 |
+
# Load pre-trained model for emotion detection
|
19 |
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
20 |
|
21 |
def detect_emotion(text):
|
|
|
22 |
result = emotion_classifier(text)
|
23 |
emotion = result[0]['label']
|
24 |
confidence = result[0]['score']
|
|
|
29 |
emotion, confidence = detect_emotion(text)
|
30 |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
31 |
|
32 |
+
"""Emotion-Aware TTS (Using Tacotron 2 or Similar)"""
|
33 |
+
|
34 |
import torch
|
35 |
import librosa
|
36 |
import numpy as np
|
|
|
39 |
# Load TTS model and vocoder automatically during initialization
|
40 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
|
|
43 |
emotion_settings = {
|
44 |
"neutral": {"pitch": 1.0, "speed": 1.0, "prosody": 0.5}, # Neutral tone
|
45 |
"joy": {"pitch": 1.3, "speed": 1.2, "prosody": 1.5}, # Upbeat, energetic
|
|
|
51 |
"shame": {"pitch": 0.8, "speed": 0.85, "prosody": 0.5}, # Quiet, subdued tone
|
52 |
}
|
53 |
|
|
|
|
|
|
|
54 |
|
55 |
+
import librosa
|
56 |
+
import soundfile as sf
|
57 |
+
|
58 |
+
def adjust_pitch(audio_path, pitch_factor):
|
59 |
+
# Load audio
|
60 |
+
y, sr = librosa.load(audio_path)
|
61 |
# Adjust pitch
|
62 |
+
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor)
|
63 |
+
# Save adjusted audio
|
64 |
+
sf.write(audio_path, y_shifted, sr)
|
65 |
+
|
66 |
+
def adjust_speed(audio_path, speed_factor):
|
67 |
+
# Load the audio file
|
68 |
+
y, sr = librosa.load(audio_path)
|
69 |
+
|
70 |
+
# Adjust the speed (this alters the duration of the audio)
|
71 |
+
y_speeded = librosa.effects.time_stretch(y, speed_factor)
|
72 |
+
|
73 |
# Save the adjusted audio
|
74 |
+
sf.write(audio_path, y_speeded, sr)
|
75 |
+
|
76 |
+
|
77 |
|
78 |
def generate_emotional_speech(text, emotion):
|
79 |
# Retrieve pitch, speed, and prosody based on detected emotion
|
|
|
111 |
# Example usage
|
112 |
emotion_aware_tts_pipeline("I can’t stooop smiiiling, everything feels perrrfect!")
|
113 |
|
114 |
+
"""Fine-tuning the Emotion Detection Model"""
|
115 |
+
|
116 |
import os
|
117 |
os.environ["WANDB_DISABLED"] = "true"
|
118 |
+
|
119 |
+
from google.colab import drive
|
120 |
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
121 |
from datasets import load_dataset
|
122 |
|
|
|
128 |
|
129 |
# Define a function to map emotion labels to integers
|
130 |
def map_emotion_to_int(example):
|
131 |
+
# Assuming your dataset has an 'emotion' column with string labels
|
132 |
+
# Replace this with your actual emotion labels and their corresponding integers
|
133 |
+
# *Change 'emotion' to the actual column name in your dataset*
|
134 |
emotion_mapping = {
|
135 |
"neutral": 0,
|
136 |
"joy": 1,
|
|
|
141 |
"disgust": 6,
|
142 |
"shame": 7,
|
143 |
}
|
144 |
+
# Assuming your emotion column is named 'label'
|
145 |
+
# example['label'] = emotion_mapping[example['emotion']] # Create a new 'label' column with integer values
|
146 |
+
example['label'] = emotion_mapping.get(example['label'], -1) # If the label is not in the emotion mapping then we set it to -1. We can later filter these examples out
|
147 |
return example
|
148 |
|
149 |
+
|
150 |
def preprocess_data(example):
|
151 |
+
return tokenizer(example['text'], truncation=True, padding=True, max_length=512) # Added max_length for consistency
|
152 |
+
|
153 |
|
154 |
# Apply emotion mapping before tokenization
|
155 |
dataset = dataset.map(map_emotion_to_int, batched=False)
|
156 |
+
# *Keep the 'label' column for training. Only remove 'text'*
|
157 |
+
# Filter out examples with labels not in emotion_mapping (-1)
|
158 |
+
dataset = dataset.filter(lambda example: example['label'] != -1) # Filter out examples with label -1
|
159 |
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text'])
|
160 |
|
161 |
# Load model
|
162 |
+
# model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", num_labels=8)
|
163 |
+
|
164 |
+
# Load model with ignore_mismatched_sizes=True
|
165 |
model = AutoModelForSequenceClassification.from_pretrained(
|
166 |
"bhadresh-savani/distilbert-base-uncased-emotion",
|
167 |
num_labels=8,
|
|
|
170 |
|
171 |
# Training arguments
|
172 |
training_args = TrainingArguments(
|
173 |
+
output_dir="./results", # Directory for model checkpoints and logs
|
174 |
+
evaluation_strategy="epoch", # Evaluate after every epoch
|
175 |
+
learning_rate=5e-5, # Start with 5e-5 (slightly higher than default 2e-5)
|
176 |
+
per_device_train_batch_size=16, # Use 16 for balance between memory usage and training speed
|
177 |
+
gradient_accumulation_steps=4, # Accumulate gradients to simulate larger batch size
|
178 |
+
num_train_epochs=5, # Train for 4-5 epochs (typically enough for fine-tuning)
|
179 |
+
weight_decay=0.01, # Regularization to avoid overfitting
|
180 |
+
save_strategy="epoch", # Save checkpoints after each epoch
|
181 |
+
logging_dir="./logs", # Directory for logging
|
182 |
+
logging_steps=100, # Log every 100 steps
|
183 |
+
warmup_steps=500, # Gradual learning rate increase for the first 500 steps
|
184 |
+
save_total_limit=3, # Keep only the last 3 checkpoints
|
185 |
+
fp16=True, # Enable mixed precision for faster training if GPU supports it
|
186 |
+
load_best_model_at_end=True, # Load the best model at the end of training
|
187 |
+
metric_for_best_model="eval_loss", # Use evaluation loss to select the best model
|
188 |
+
greater_is_better=False, # Lower loss is better
|
189 |
)
|
190 |
|
191 |
+
|
192 |
# Train model
|
193 |
trainer = Trainer(
|
194 |
model=model,
|
|
|
200 |
|
201 |
trainer.train()
|
202 |
|
203 |
+
# Save the model and tokenizer to Google Drive
|
204 |
model_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
205 |
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
206 |
+
|
207 |
+
# Save the fine-tuned model
|
208 |
model.save_pretrained(model_save_path)
|
209 |
tokenizer.save_pretrained(tokenizer_save_path)
|
210 |
|
211 |
print("Model and tokenizer saved to Google Drive.")
|
212 |
|
213 |
+
"""Reload the Fine-Tuned Model"""
|
214 |
+
|
215 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
216 |
|
217 |
# Mount Google Drive
|
|
|
228 |
|
229 |
print("Fine-tuned model and tokenizer loaded successfully.")
|
230 |
|
231 |
+
"""Test the Reloaded Model"""
|
232 |
+
|
233 |
from transformers import pipeline
|
234 |
|
235 |
# Create a text classification pipeline with the loaded model
|
|
|
240 |
result = emotion_classifier(text)
|
241 |
print(result)
|
242 |
|
243 |
+
"""Fine-tuning the TTS System"""
|
244 |
+
|
245 |
+
from TTS.api import TTS
|
246 |
+
from TTS.utils.audio import AudioProcessor
|
247 |
+
from TTS.tts.models.tacotron2 import Tacotron2
|
248 |
+
import torch
|
249 |
+
|
250 |
+
# Load pre-trained model
|
251 |
+
#model = Tacotron2.load_model("tts_models/en/ljspeech/tacotron2-DDC")
|
252 |
+
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") # Use TTS for model loading
|
253 |
+
|
254 |
+
# Access the Tacotron2 model from the TTS object
|
255 |
+
model = tts.synthesizer.tts_model
|
256 |
+
|
257 |
+
# Fine-tuning parameters
|
258 |
+
model.config.dataset_path = "/content/drive/MyDrive/RAVDESS"
|
259 |
+
model.config.num_epochs = 10
|
260 |
+
|
261 |
+
# Train
|
262 |
+
model.train()
|
263 |
+
|
264 |
+
# Define the save path on Google Drive
|
265 |
+
save_path = "/content/drive/My Drive/fine_tuned_tacotron2.pth"
|
266 |
+
|
267 |
+
# Save the model's state dictionary using torch.save
|
268 |
+
torch.save(model.state_dict(), save_path)
|
269 |
+
|
270 |
+
|
271 |
+
"""Set up the Gradio interface"""
|
272 |
+
|
273 |
import gradio as gr
|
274 |
+
from transformers import pipeline
|
275 |
+
from TTS.api import TTS
|
276 |
+
|
277 |
+
# Load pre-trained emotion detection model
|
278 |
+
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
279 |
+
|
280 |
+
# Load TTS model
|
281 |
+
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
282 |
+
|
283 |
+
# Emotion-specific settings for pitch and speed
|
284 |
+
emotion_settings = {
|
285 |
+
"neutral": {"pitch": 1.0, "speed": 1.0, "prosody": 0.5}, # Neutral tone
|
286 |
+
"joy": {"pitch": 1.3, "speed": 1.2, "prosody": 1.5}, # Upbeat, energetic
|
287 |
+
"sadness": {"pitch": 0.8, "speed": 0.9, "prosody": 0.8}, # Subdued, slow tone
|
288 |
+
"anger": {"pitch": 1.6, "speed": 1.4, "prosody": 1.8}, # Sharp, intense
|
289 |
+
"fear": {"pitch": 1.2, "speed": 0.95, "prosody": 1.2}, # Tense, slow
|
290 |
+
"surprise": {"pitch": 1.5, "speed": 1.3, "prosody": 1.4}, # Excited, high energy
|
291 |
+
"disgust": {"pitch": 0.9, "speed": 0.95, "prosody": 0.6}, # Low, deliberate
|
292 |
+
"shame": {"pitch": 0.8, "speed": 0.85, "prosody": 0.5}, # Quiet, subdued tone
|
293 |
+
}
|
294 |
+
|
295 |
+
|
296 |
|
297 |
+
# Function to process text or file input and generate audio
|
298 |
+
def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
299 |
try:
|
300 |
# Get text from input or file
|
301 |
if file_input:
|
|
|
315 |
|
316 |
# Generate audio
|
317 |
audio_path = "output.wav"
|
318 |
+
tts_model.tts_to_file(text=input_text, file_path=audio_path, speed=speed, pitch=pitch)
|
319 |
+
|
320 |
|
|
|
|
|
321 |
|
322 |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
323 |
else:
|
|
|
325 |
except Exception as e:
|
326 |
return f"Error: {str(e)}", None
|
327 |
|
328 |
+
|
329 |
+
|
330 |
# Define Gradio interface
|
331 |
iface = gr.Interface(
|
332 |
+
fn=emotion_aware_tts_pipeline,
|
333 |
inputs=[
|
334 |
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
335 |
gr.File(label="Upload a Text File")
|