Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,18 +1,12 @@
|
|
1 |
from google.colab import drive
|
2 |
drive.mount('/content/drive')
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
|
7 |
-
|
8 |
-
"""Emotion Detection (Using Text Dataset)
|
9 |
-
|
10 |
-
"""
|
11 |
|
|
|
12 |
!pip install --upgrade numpy tensorflow transformers TTS
|
13 |
|
14 |
-
!pip freeze > requirements.txt
|
15 |
-
|
16 |
from transformers import pipeline
|
17 |
|
18 |
# Load pre-trained model for emotion detection
|
@@ -29,8 +23,7 @@ text = "I am feeling excited today!"
|
|
29 |
emotion, confidence = detect_emotion(text)
|
30 |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
import torch
|
35 |
import librosa
|
36 |
import numpy as np
|
@@ -39,67 +32,58 @@ from TTS.api import TTS # Using Coqui TTS for simplicity
|
|
39 |
# Load TTS model and vocoder automatically during initialization
|
40 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
emotion_settings = {
|
46 |
-
"neutral": {"pitch": 1.0, "speed": 1.0}, # Baseline conversational tone
|
47 |
-
"joy": {"pitch": 1.3, "speed": 1.2}, # Upbeat and energetic
|
48 |
-
"sadness": {"pitch": 0.8, "speed": 0.9}, # Subdued, slow tone
|
49 |
-
"anger": {"pitch": 1.6, "speed": 1.4}, # Intense and sharp
|
50 |
-
"fear": {"pitch": 1.2, "speed": 0.95}, # Tense and slightly slow
|
51 |
-
"surprise": {"pitch": 1.5, "speed": 1.3}, # Excitement with high pitch and fast speech
|
52 |
-
"disgust": {"pitch": 0.9, "speed": 0.95}, # Low and deliberate
|
53 |
-
"shame": {"pitch": 0.8, "speed": 0.85}, # Quiet, subdued tone
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
}
|
56 |
-
|
57 |
-
import librosa
|
58 |
-
import soundfile as sf
|
59 |
|
60 |
-
def
|
61 |
-
# Load audio
|
62 |
y, sr = librosa.load(audio_path)
|
|
|
63 |
# Adjust pitch
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
def
|
69 |
-
#
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0})
|
80 |
-
# Generate speech with the TTS model
|
81 |
-
# Instead of directly passing speed and pitch to tts_to_file,
|
82 |
-
# We adjust the text to simulate the effect. This is a temporary solution.
|
83 |
-
# You might need to fine-tune these adjustments or consider a different TTS library
|
84 |
-
# with better control over speech parameters.
|
85 |
-
adjusted_text = text
|
86 |
-
if settings['speed'] > 1.0:
|
87 |
-
adjusted_text = adjusted_text.replace(" ", ".") # Simulate faster speech
|
88 |
-
elif settings['speed'] < 1.0:
|
89 |
-
adjusted_text = adjusted_text.replace(" ", "...") # Simulate slower speech
|
90 |
-
|
91 |
-
# Explicitly specify the output path
|
92 |
-
audio_path = "output.wav" # Or any desired filename
|
93 |
-
tts_model.tts_to_file(text=adjusted_text, file_path=audio_path) # Pass file_path argument
|
94 |
-
return audio_path
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
output_audio = generate_emotional_speech("Welcome to the smart library!", emotion)
|
99 |
-
print(f"Generated Speech Saved At: {output_audio}")
|
100 |
|
101 |
-
|
102 |
|
|
|
103 |
from IPython.display import Audio, display
|
104 |
|
105 |
def emotion_aware_tts_pipeline(text):
|
@@ -115,12 +99,9 @@ def emotion_aware_tts_pipeline(text):
|
|
115 |
# Example usage
|
116 |
emotion_aware_tts_pipeline("I can’t stooop smiiiling, everything feels perrrfect!")
|
117 |
|
118 |
-
|
119 |
-
|
120 |
import os
|
121 |
os.environ["WANDB_DISABLED"] = "true"
|
122 |
-
|
123 |
-
from google.colab import drive
|
124 |
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
125 |
from datasets import load_dataset
|
126 |
|
@@ -132,9 +113,6 @@ tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncas
|
|
132 |
|
133 |
# Define a function to map emotion labels to integers
|
134 |
def map_emotion_to_int(example):
|
135 |
-
# Assuming your dataset has an 'emotion' column with string labels
|
136 |
-
# Replace this with your actual emotion labels and their corresponding integers
|
137 |
-
# **Change 'emotion' to the actual column name in your dataset**
|
138 |
emotion_mapping = {
|
139 |
"neutral": 0,
|
140 |
"joy": 1,
|
@@ -145,27 +123,18 @@ def map_emotion_to_int(example):
|
|
145 |
"disgust": 6,
|
146 |
"shame": 7,
|
147 |
}
|
148 |
-
|
149 |
-
# example['label'] = emotion_mapping[example['emotion']] # Create a new 'label' column with integer values
|
150 |
-
example['label'] = emotion_mapping.get(example['label'], -1) # If the label is not in the emotion mapping then we set it to -1. We can later filter these examples out
|
151 |
return example
|
152 |
|
153 |
-
|
154 |
def preprocess_data(example):
|
155 |
-
return tokenizer(example['text'], truncation=True, padding=True, max_length=512)
|
156 |
-
|
157 |
|
158 |
# Apply emotion mapping before tokenization
|
159 |
dataset = dataset.map(map_emotion_to_int, batched=False)
|
160 |
-
|
161 |
-
# Filter out examples with labels not in emotion_mapping (-1)
|
162 |
-
dataset = dataset.filter(lambda example: example['label'] != -1) # Filter out examples with label -1
|
163 |
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text'])
|
164 |
|
165 |
# Load model
|
166 |
-
# model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", num_labels=8)
|
167 |
-
|
168 |
-
# Load model with ignore_mismatched_sizes=True
|
169 |
model = AutoModelForSequenceClassification.from_pretrained(
|
170 |
"bhadresh-savani/distilbert-base-uncased-emotion",
|
171 |
num_labels=8,
|
@@ -174,25 +143,24 @@ model = AutoModelForSequenceClassification.from_pretrained(
|
|
174 |
|
175 |
# Training arguments
|
176 |
training_args = TrainingArguments(
|
177 |
-
output_dir="./results",
|
178 |
-
evaluation_strategy="epoch",
|
179 |
-
learning_rate=5e-5,
|
180 |
-
per_device_train_batch_size=16,
|
181 |
-
gradient_accumulation_steps=4,
|
182 |
-
num_train_epochs=5,
|
183 |
-
weight_decay=0.01,
|
184 |
-
save_strategy="epoch",
|
185 |
-
logging_dir="./logs",
|
186 |
-
logging_steps=100,
|
187 |
-
warmup_steps=500,
|
188 |
-
save_total_limit=3,
|
189 |
-
fp16=True,
|
190 |
-
load_best_model_at_end=True,
|
191 |
-
metric_for_best_model="eval_loss",
|
192 |
-
greater_is_better=False,
|
193 |
)
|
194 |
|
195 |
-
|
196 |
# Train model
|
197 |
trainer = Trainer(
|
198 |
model=model,
|
@@ -204,18 +172,15 @@ trainer = Trainer(
|
|
204 |
|
205 |
trainer.train()
|
206 |
|
207 |
-
# Save the model and tokenizer
|
208 |
model_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
209 |
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
210 |
-
|
211 |
-
# Save the fine-tuned model
|
212 |
model.save_pretrained(model_save_path)
|
213 |
tokenizer.save_pretrained(tokenizer_save_path)
|
214 |
|
215 |
print("Model and tokenizer saved to Google Drive.")
|
216 |
|
217 |
-
|
218 |
-
|
219 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
220 |
|
221 |
# Mount Google Drive
|
@@ -232,8 +197,7 @@ tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
|
232 |
|
233 |
print("Fine-tuned model and tokenizer loaded successfully.")
|
234 |
|
235 |
-
|
236 |
-
|
237 |
from transformers import pipeline
|
238 |
|
239 |
# Create a text classification pipeline with the loaded model
|
@@ -244,61 +208,10 @@ text = "I feel so upset today!"
|
|
244 |
result = emotion_classifier(text)
|
245 |
print(result)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
from TTS.api import TTS
|
250 |
-
from TTS.utils.audio import AudioProcessor
|
251 |
-
from TTS.tts.models.tacotron2 import Tacotron2
|
252 |
-
import torch
|
253 |
-
|
254 |
-
# Load pre-trained model
|
255 |
-
#model = Tacotron2.load_model("tts_models/en/ljspeech/tacotron2-DDC")
|
256 |
-
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") # Use TTS for model loading
|
257 |
-
|
258 |
-
# Access the Tacotron2 model from the TTS object
|
259 |
-
model = tts.synthesizer.tts_model
|
260 |
-
|
261 |
-
# Fine-tuning parameters
|
262 |
-
model.config.dataset_path = "/content/drive/MyDrive/RAVDESS"
|
263 |
-
model.config.num_epochs = 10
|
264 |
-
|
265 |
-
# Train
|
266 |
-
model.train()
|
267 |
-
|
268 |
-
# Define the save path on Google Drive
|
269 |
-
save_path = "/content/drive/My Drive/fine_tuned_tacotron2.pth"
|
270 |
-
|
271 |
-
# Save the model's state dictionary using torch.save
|
272 |
-
torch.save(model.state_dict(), save_path)
|
273 |
-
|
274 |
-
|
275 |
-
"""Set up the Gradio interface"""
|
276 |
-
|
277 |
import gradio as gr
|
278 |
-
from transformers import pipeline
|
279 |
-
from TTS.api import TTS
|
280 |
-
|
281 |
-
# Load pre-trained emotion detection model
|
282 |
-
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
283 |
|
284 |
-
|
285 |
-
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
286 |
-
|
287 |
-
# Emotion-specific settings for pitch and speed
|
288 |
-
emotion_settings = {
|
289 |
-
"neutral": {"pitch": 1.0, "speed": 1.0},
|
290 |
-
"joy": {"pitch": 1.3, "speed": 1.2},
|
291 |
-
"sadness": {"pitch": 0.8, "speed": 0.9},
|
292 |
-
"anger": {"pitch": 1.6, "speed": 1.4},
|
293 |
-
"fear": {"pitch": 1.2, "speed": 0.95},
|
294 |
-
"surprise": {"pitch": 1.5, "speed": 1.3},
|
295 |
-
"disgust": {"pitch": 0.9, "speed": 0.95},
|
296 |
-
"shame": {"pitch": 0.8, "speed": 0.85},
|
297 |
-
}
|
298 |
-
|
299 |
-
|
300 |
-
# Function to process text or file input and generate audio
|
301 |
-
def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
302 |
try:
|
303 |
# Get text from input or file
|
304 |
if file_input:
|
@@ -318,9 +231,11 @@ def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
|
318 |
|
319 |
# Generate audio
|
320 |
audio_path = "output.wav"
|
321 |
-
tts_model.
|
322 |
-
|
323 |
|
|
|
|
|
324 |
|
325 |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
326 |
else:
|
@@ -328,11 +243,9 @@ def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
|
328 |
except Exception as e:
|
329 |
return f"Error: {str(e)}", None
|
330 |
|
331 |
-
|
332 |
-
|
333 |
# Define Gradio interface
|
334 |
iface = gr.Interface(
|
335 |
-
fn=
|
336 |
inputs=[
|
337 |
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
338 |
gr.File(label="Upload a Text File")
|
@@ -346,4 +259,4 @@ iface = gr.Interface(
|
|
346 |
)
|
347 |
|
348 |
# Launch Gradio interface
|
349 |
-
iface.launch()
|
|
|
1 |
from google.colab import drive
|
2 |
drive.mount('/content/drive')
|
3 |
|
4 |
+
# Install Dependencies
|
5 |
+
!pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Emotion Detection (Using Text Dataset)
|
8 |
!pip install --upgrade numpy tensorflow transformers TTS
|
9 |
|
|
|
|
|
10 |
from transformers import pipeline
|
11 |
|
12 |
# Load pre-trained model for emotion detection
|
|
|
23 |
emotion, confidence = detect_emotion(text)
|
24 |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
25 |
|
26 |
+
# Emotion-Aware TTS (Using Tacotron 2 or Similar)
|
|
|
27 |
import torch
|
28 |
import librosa
|
29 |
import numpy as np
|
|
|
32 |
# Load TTS model and vocoder automatically during initialization
|
33 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
34 |
|
35 |
+
# HiFi-GAN Vocoder (Ensure you have the model or download it)
|
36 |
+
from TTS.utils.generic_utils import download_model
|
37 |
+
from TTS.vocoder.hifigan import HIFIGAN
|
38 |
|
39 |
+
vocoder_model = download_model("hifigan_ljspeech")
|
40 |
+
vocoder = HIFIGAN(vocoder_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Emotion-specific settings for pitch, speed, and prosody
|
43 |
+
emotion_settings = {
|
44 |
+
"neutral": {"pitch": 1.0, "speed": 1.0, "prosody": 0.5}, # Neutral tone
|
45 |
+
"joy": {"pitch": 1.3, "speed": 1.2, "prosody": 1.5}, # Upbeat, energetic
|
46 |
+
"sadness": {"pitch": 0.8, "speed": 0.9, "prosody": 0.8}, # Subdued, slow tone
|
47 |
+
"anger": {"pitch": 1.6, "speed": 1.4, "prosody": 1.8}, # Sharp, intense
|
48 |
+
"fear": {"pitch": 1.2, "speed": 0.95, "prosody": 1.2}, # Tense, slow
|
49 |
+
"surprise": {"pitch": 1.5, "speed": 1.3, "prosody": 1.4}, # Excited, high energy
|
50 |
+
"disgust": {"pitch": 0.9, "speed": 0.95, "prosody": 0.6}, # Low, deliberate
|
51 |
+
"shame": {"pitch": 0.8, "speed": 0.85, "prosody": 0.5}, # Quiet, subdued tone
|
52 |
}
|
|
|
|
|
|
|
53 |
|
54 |
+
def adjust_pitch_and_speed(audio_path, pitch_factor, speed_factor):
|
55 |
+
# Load audio file
|
56 |
y, sr = librosa.load(audio_path)
|
57 |
+
|
58 |
# Adjust pitch
|
59 |
+
y_pitch = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor)
|
60 |
+
|
61 |
+
# Adjust speed
|
62 |
+
y_speed = librosa.effects.time_stretch(y_pitch, speed_factor)
|
63 |
+
|
64 |
+
# Save the adjusted audio
|
65 |
+
sf.write(audio_path, y_speed, sr)
|
66 |
|
67 |
+
def generate_emotional_speech(text, emotion):
|
68 |
+
# Retrieve pitch, speed, and prosody based on detected emotion
|
69 |
+
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0, "prosody": 1.0})
|
70 |
+
pitch = settings["pitch"]
|
71 |
+
speed = settings["speed"]
|
72 |
|
73 |
+
# Generate mel spectrogram with TTS
|
74 |
+
mel_spectrogram = tts_model.get_mel_spectrogram(text)
|
75 |
|
76 |
+
# Use HiFi-GAN vocoder to decode the spectrogram into waveform
|
77 |
+
audio = vocoder.decode(mel_spectrogram)
|
78 |
+
audio_path = "output.wav"
|
79 |
+
librosa.output.write_wav(audio_path, audio, sr=22050) # Save the initial audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# Apply post-processing: adjust pitch and speed
|
82 |
+
adjust_pitch_and_speed(audio_path, pitch_factor=pitch, speed_factor=speed)
|
|
|
|
|
83 |
|
84 |
+
return audio_path
|
85 |
|
86 |
+
# Integrating Emotion Detection and TTS Pipeline
|
87 |
from IPython.display import Audio, display
|
88 |
|
89 |
def emotion_aware_tts_pipeline(text):
|
|
|
99 |
# Example usage
|
100 |
emotion_aware_tts_pipeline("I can’t stooop smiiiling, everything feels perrrfect!")
|
101 |
|
102 |
+
# Fine-tuning the Emotion Detection Model (if needed)
|
|
|
103 |
import os
|
104 |
os.environ["WANDB_DISABLED"] = "true"
|
|
|
|
|
105 |
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
106 |
from datasets import load_dataset
|
107 |
|
|
|
113 |
|
114 |
# Define a function to map emotion labels to integers
|
115 |
def map_emotion_to_int(example):
|
|
|
|
|
|
|
116 |
emotion_mapping = {
|
117 |
"neutral": 0,
|
118 |
"joy": 1,
|
|
|
123 |
"disgust": 6,
|
124 |
"shame": 7,
|
125 |
}
|
126 |
+
example['label'] = emotion_mapping.get(example['label'], -1)
|
|
|
|
|
127 |
return example
|
128 |
|
|
|
129 |
def preprocess_data(example):
|
130 |
+
return tokenizer(example['text'], truncation=True, padding=True, max_length=512)
|
|
|
131 |
|
132 |
# Apply emotion mapping before tokenization
|
133 |
dataset = dataset.map(map_emotion_to_int, batched=False)
|
134 |
+
dataset = dataset.filter(lambda example: example['label'] != -1)
|
|
|
|
|
135 |
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text'])
|
136 |
|
137 |
# Load model
|
|
|
|
|
|
|
138 |
model = AutoModelForSequenceClassification.from_pretrained(
|
139 |
"bhadresh-savani/distilbert-base-uncased-emotion",
|
140 |
num_labels=8,
|
|
|
143 |
|
144 |
# Training arguments
|
145 |
training_args = TrainingArguments(
|
146 |
+
output_dir="./results",
|
147 |
+
evaluation_strategy="epoch",
|
148 |
+
learning_rate=5e-5,
|
149 |
+
per_device_train_batch_size=16,
|
150 |
+
gradient_accumulation_steps=4,
|
151 |
+
num_train_epochs=5,
|
152 |
+
weight_decay=0.01,
|
153 |
+
save_strategy="epoch",
|
154 |
+
logging_dir="./logs",
|
155 |
+
logging_steps=100,
|
156 |
+
warmup_steps=500,
|
157 |
+
save_total_limit=3,
|
158 |
+
fp16=True,
|
159 |
+
load_best_model_at_end=True,
|
160 |
+
metric_for_best_model="eval_loss",
|
161 |
+
greater_is_better=False,
|
162 |
)
|
163 |
|
|
|
164 |
# Train model
|
165 |
trainer = Trainer(
|
166 |
model=model,
|
|
|
172 |
|
173 |
trainer.train()
|
174 |
|
175 |
+
# Save the model and tokenizer
|
176 |
model_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
177 |
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
|
|
|
|
178 |
model.save_pretrained(model_save_path)
|
179 |
tokenizer.save_pretrained(tokenizer_save_path)
|
180 |
|
181 |
print("Model and tokenizer saved to Google Drive.")
|
182 |
|
183 |
+
# Reload the Fine-Tuned Model
|
|
|
184 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
185 |
|
186 |
# Mount Google Drive
|
|
|
197 |
|
198 |
print("Fine-tuned model and tokenizer loaded successfully.")
|
199 |
|
200 |
+
# Test the Reloaded Model
|
|
|
201 |
from transformers import pipeline
|
202 |
|
203 |
# Create a text classification pipeline with the loaded model
|
|
|
208 |
result = emotion_classifier(text)
|
209 |
print(result)
|
210 |
|
211 |
+
# Set up the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
def emotion_aware_tts_pipeline_gradio(input_text=None, file_input=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
try:
|
216 |
# Get text from input or file
|
217 |
if file_input:
|
|
|
231 |
|
232 |
# Generate audio
|
233 |
audio_path = "output.wav"
|
234 |
+
mel_spectrogram = tts_model.get_mel_spectrogram(input_text)
|
235 |
+
audio = vocoder.decode(mel_spectrogram)
|
236 |
|
237 |
+
# Post-processing: adjust pitch and speed
|
238 |
+
adjust_pitch_and_speed(audio_path, pitch_factor=pitch, speed_factor=speed)
|
239 |
|
240 |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
241 |
else:
|
|
|
243 |
except Exception as e:
|
244 |
return f"Error: {str(e)}", None
|
245 |
|
|
|
|
|
246 |
# Define Gradio interface
|
247 |
iface = gr.Interface(
|
248 |
+
fn=emotion_aware_tts_pipeline_gradio,
|
249 |
inputs=[
|
250 |
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
251 |
gr.File(label="Upload a Text File")
|
|
|
259 |
)
|
260 |
|
261 |
# Launch Gradio interface
|
262 |
+
iface.launch()
|