Spaces:
Runtime error
Runtime error
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from google.colab import drive
|
2 |
+
drive.mount('/content/drive')
|
3 |
+
|
4 |
+
"""Install Dependencies"""
|
5 |
+
|
6 |
+
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
|
7 |
+
|
8 |
+
"""Emotion Detection (Using Text Dataset)
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
!pip install --upgrade numpy tensorflow transformers TTS
|
13 |
+
|
14 |
+
!pip freeze > requirements.txt
|
15 |
+
|
16 |
+
from transformers import pipeline
|
17 |
+
|
18 |
+
# Load pre-trained model for emotion detection
|
19 |
+
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
20 |
+
|
21 |
+
def detect_emotion(text):
|
22 |
+
result = emotion_classifier(text)
|
23 |
+
emotion = result[0]['label']
|
24 |
+
confidence = result[0]['score']
|
25 |
+
return emotion, confidence
|
26 |
+
|
27 |
+
# Example usage
|
28 |
+
text = "I am feeling excited today!"
|
29 |
+
emotion, confidence = detect_emotion(text)
|
30 |
+
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
31 |
+
|
32 |
+
"""Emotion-Aware TTS (Using Tacotron 2 or Similar)"""
|
33 |
+
|
34 |
+
import torch
|
35 |
+
import librosa
|
36 |
+
import numpy as np
|
37 |
+
from TTS.api import TTS # Using Coqui TTS for simplicity
|
38 |
+
|
39 |
+
# Load TTS model and vocoder automatically during initialization
|
40 |
+
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
41 |
+
|
42 |
+
|
43 |
+
def generate_emotional_speech(text, emotion):
|
44 |
+
# Map emotion to voice modulation parameters (pitch, speed)
|
45 |
+
emotion_settings = {
|
46 |
+
"happy": {"pitch": 1.3, "speed": 1.2}, # Upbeat and energetic
|
47 |
+
"joy": {"pitch": 1.2, "speed": 1.1}, # Less exaggerated than 'happy'
|
48 |
+
"surprise": {"pitch": 1.5, "speed": 1.3}, # Excitement with high pitch and fast speech
|
49 |
+
"sad": {"pitch": 0.8, "speed": 0.9}, # Subdued, slow tone
|
50 |
+
"angry": {"pitch": 1.6, "speed": 1.4}, # Intense and sharp
|
51 |
+
"fear": {"pitch": 1.2, "speed": 0.95}, # Tense and slightly slow
|
52 |
+
"disgust": {"pitch": 0.9, "speed": 0.95}, # Low and deliberate
|
53 |
+
"shame": {"pitch": 0.8, "speed": 0.85}, # Quiet, subdued tone
|
54 |
+
"neutral": {"pitch": 1.0, "speed": 1.0}, # Baseline conversational tone
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
# Retrieve pitch and speed based on detected emotion
|
60 |
+
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0})
|
61 |
+
# Generate speech with the TTS model
|
62 |
+
# Instead of directly passing speed and pitch to tts_to_file,
|
63 |
+
# We adjust the text to simulate the effect. This is a temporary solution.
|
64 |
+
# You might need to fine-tune these adjustments or consider a different TTS library
|
65 |
+
# with better control over speech parameters.
|
66 |
+
adjusted_text = text
|
67 |
+
if settings['speed'] > 1.0:
|
68 |
+
adjusted_text = adjusted_text.replace(" ", ".") # Simulate faster speech
|
69 |
+
elif settings['speed'] < 1.0:
|
70 |
+
adjusted_text = adjusted_text.replace(" ", "...") # Simulate slower speech
|
71 |
+
|
72 |
+
# Explicitly specify the output path
|
73 |
+
audio_path = "output.wav" # Or any desired filename
|
74 |
+
tts_model.tts_to_file(text=adjusted_text, file_path=audio_path) # Pass file_path argument
|
75 |
+
return audio_path
|
76 |
+
|
77 |
+
# Example usage
|
78 |
+
emotion = "happy"
|
79 |
+
output_audio = generate_emotional_speech("Welcome to the smart library!", emotion)
|
80 |
+
print(f"Generated Speech Saved At: {output_audio}")
|
81 |
+
|
82 |
+
"""Integrating the Workflow"""
|
83 |
+
|
84 |
+
from IPython.display import Audio, display
|
85 |
+
|
86 |
+
def emotion_aware_tts_pipeline(text):
|
87 |
+
emotion, confidence = detect_emotion(text)
|
88 |
+
print(f"Emotion Detected: {emotion} with Confidence: {confidence:.2f}")
|
89 |
+
|
90 |
+
audio_path = generate_emotional_speech(text, emotion)
|
91 |
+
print(f"Audio Generated: {audio_path}")
|
92 |
+
|
93 |
+
# Display and play the audio
|
94 |
+
display(Audio(audio_path, autoplay=True))
|
95 |
+
|
96 |
+
# Example usage
|
97 |
+
emotion_aware_tts_pipeline("I canβt stooop smiiiling, everything feels perrrfect!")
|
98 |
+
|
99 |
+
"""Fine-tuning the Emotion Detection Model"""
|
100 |
+
|
101 |
+
import os
|
102 |
+
os.environ["WANDB_DISABLED"] = "true"
|
103 |
+
|
104 |
+
from google.colab import drive
|
105 |
+
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
106 |
+
from datasets import load_dataset
|
107 |
+
|
108 |
+
# Load dataset
|
109 |
+
dataset = load_dataset('/content/drive/MyDrive/Emotion_Model') #path_to_your_dataset
|
110 |
+
|
111 |
+
# Preprocess data
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
113 |
+
|
114 |
+
# Define a function to map emotion labels to integers
|
115 |
+
def map_emotion_to_int(example):
|
116 |
+
# Assuming your dataset has an 'emotion' column with string labels
|
117 |
+
# Replace this with your actual emotion labels and their corresponding integers
|
118 |
+
# **Change 'emotion' to the actual column name in your dataset**
|
119 |
+
emotion_mapping = {
|
120 |
+
"neutral": 0,
|
121 |
+
"joy": 1,
|
122 |
+
"sad": 2,
|
123 |
+
"anger": 3,
|
124 |
+
"fear": 4,
|
125 |
+
"surprise": 5,
|
126 |
+
"disgust": 6,
|
127 |
+
"shame": 7,
|
128 |
+
}
|
129 |
+
# Assuming your emotion column is named 'label'
|
130 |
+
# example['label'] = emotion_mapping[example['emotion']] # Create a new 'label' column with integer values
|
131 |
+
example['label'] = emotion_mapping.get(example['label'], -1) # If the label is not in the emotion mapping then we set it to -1. We can later filter these examples out
|
132 |
+
return example
|
133 |
+
|
134 |
+
|
135 |
+
def preprocess_data(example):
|
136 |
+
return tokenizer(example['text'], truncation=True, padding=True, max_length=512) # Added max_length for consistency
|
137 |
+
|
138 |
+
|
139 |
+
# Apply emotion mapping before tokenization
|
140 |
+
dataset = dataset.map(map_emotion_to_int, batched=False)
|
141 |
+
# **Keep the 'label' column for training. Only remove 'text'**
|
142 |
+
# Filter out examples with labels not in emotion_mapping (-1)
|
143 |
+
dataset = dataset.filter(lambda example: example['label'] != -1) # Filter out examples with label -1
|
144 |
+
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text'])
|
145 |
+
|
146 |
+
# Load model
|
147 |
+
# model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", num_labels=8)
|
148 |
+
|
149 |
+
# Load model with ignore_mismatched_sizes=True
|
150 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
151 |
+
"bhadresh-savani/distilbert-base-uncased-emotion",
|
152 |
+
num_labels=8,
|
153 |
+
ignore_mismatched_sizes=True
|
154 |
+
)
|
155 |
+
|
156 |
+
# Training arguments
|
157 |
+
training_args = TrainingArguments(
|
158 |
+
output_dir="./results", # Directory for model checkpoints and logs
|
159 |
+
evaluation_strategy="epoch", # Evaluate after every epoch
|
160 |
+
learning_rate=5e-5, # Start with 5e-5 (slightly higher than default 2e-5)
|
161 |
+
per_device_train_batch_size=16, # Use 16 for balance between memory usage and training speed
|
162 |
+
gradient_accumulation_steps=4, # Accumulate gradients to simulate larger batch size
|
163 |
+
num_train_epochs=5, # Train for 4-5 epochs (typically enough for fine-tuning)
|
164 |
+
weight_decay=0.01, # Regularization to avoid overfitting
|
165 |
+
save_strategy="epoch", # Save checkpoints after each epoch
|
166 |
+
logging_dir="./logs", # Directory for logging
|
167 |
+
logging_steps=100, # Log every 100 steps
|
168 |
+
warmup_steps=500, # Gradual learning rate increase for the first 500 steps
|
169 |
+
save_total_limit=3, # Keep only the last 3 checkpoints
|
170 |
+
fp16=True, # Enable mixed precision for faster training if GPU supports it
|
171 |
+
load_best_model_at_end=True, # Load the best model at the end of training
|
172 |
+
metric_for_best_model="eval_loss", # Use evaluation loss to select the best model
|
173 |
+
greater_is_better=False, # Lower loss is better
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
+
# Train model
|
178 |
+
trainer = Trainer(
|
179 |
+
model=model,
|
180 |
+
args=training_args,
|
181 |
+
train_dataset=tokenized_dataset['train'],
|
182 |
+
eval_dataset=tokenized_dataset['validation'],
|
183 |
+
tokenizer=tokenizer,
|
184 |
+
)
|
185 |
+
|
186 |
+
trainer.train()
|
187 |
+
|
188 |
+
# Save the model and tokenizer to Google Drive
|
189 |
+
model_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
190 |
+
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1"
|
191 |
+
|
192 |
+
# Save the fine-tuned model
|
193 |
+
model.save_pretrained(model_save_path)
|
194 |
+
tokenizer.save_pretrained(tokenizer_save_path)
|
195 |
+
|
196 |
+
print("Model and tokenizer saved to Google Drive.")
|
197 |
+
|
198 |
+
"""Reload the Fine-Tuned Model"""
|
199 |
+
|
200 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
201 |
+
|
202 |
+
# Mount Google Drive
|
203 |
+
from google.colab import drive
|
204 |
+
drive.mount('/content/drive')
|
205 |
+
|
206 |
+
# Path to the saved model and tokenizer
|
207 |
+
model_save_path = "/content/drive/My Drive/emotion_detection_model"
|
208 |
+
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model"
|
209 |
+
|
210 |
+
# Load the fine-tuned model and tokenizer
|
211 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_save_path)
|
212 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
213 |
+
|
214 |
+
print("Fine-tuned model and tokenizer loaded successfully.")
|
215 |
+
|
216 |
+
"""Test the Reloaded Model"""
|
217 |
+
|
218 |
+
from transformers import pipeline
|
219 |
+
|
220 |
+
# Create a text classification pipeline with the loaded model
|
221 |
+
emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
222 |
+
|
223 |
+
# Test with a sample text
|
224 |
+
text = "I feel so upset today!"
|
225 |
+
result = emotion_classifier(text)
|
226 |
+
print(result)
|
227 |
+
|
228 |
+
"""Fine-tuning the TTS System"""
|
229 |
+
|
230 |
+
from TTS.api import TTS
|
231 |
+
from TTS.utils.audio import AudioProcessor
|
232 |
+
from TTS.tts.models.tacotron2 import Tacotron2
|
233 |
+
import torch
|
234 |
+
|
235 |
+
# Load pre-trained model
|
236 |
+
#model = Tacotron2.load_model("tts_models/en/ljspeech/tacotron2-DDC")
|
237 |
+
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") # Use TTS for model loading
|
238 |
+
|
239 |
+
# Access the Tacotron2 model from the TTS object
|
240 |
+
model = tts.synthesizer.tts_model
|
241 |
+
|
242 |
+
# Fine-tuning parameters
|
243 |
+
model.config.dataset_path = "/content/drive/MyDrive/RAVDESS"
|
244 |
+
model.config.num_epochs = 10
|
245 |
+
|
246 |
+
# Train
|
247 |
+
model.train()
|
248 |
+
|
249 |
+
# Define the save path on Google Drive
|
250 |
+
save_path = "/content/drive/My Drive/fine_tuned_tacotron2.pth"
|
251 |
+
|
252 |
+
# Save the model's state dictionary using torch.save
|
253 |
+
torch.save(model.state_dict(), save_path)
|
254 |
+
|
255 |
+
"""Set up the Gradio interface"""
|
256 |
+
|
257 |
+
import gradio as gr
|
258 |
+
from transformers import pipeline
|
259 |
+
from TTS.api import TTS
|
260 |
+
|
261 |
+
# Load pre-trained emotion detection model
|
262 |
+
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
263 |
+
|
264 |
+
# Load TTS model
|
265 |
+
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
266 |
+
|
267 |
+
# Emotion-specific settings for pitch and speed
|
268 |
+
emotion_settings = {
|
269 |
+
"joy": {"pitch": 1.2, "speed": 1.1},
|
270 |
+
"sadness": {"pitch": 0.8, "speed": 0.9},
|
271 |
+
"anger": {"pitch": 1.0, "speed": 1.2},
|
272 |
+
"fear": {"pitch": 0.9, "speed": 1.0},
|
273 |
+
"surprise": {"pitch": 1.3, "speed": 1.2},
|
274 |
+
"neutral": {"pitch": 1.0, "speed": 1.0},
|
275 |
+
}
|
276 |
+
|
277 |
+
# Function to process text or file input and generate audio
|
278 |
+
def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
279 |
+
try:
|
280 |
+
# Get text from input or file
|
281 |
+
if file_input:
|
282 |
+
with open(file_input.name, 'r') as file:
|
283 |
+
input_text = file.read()
|
284 |
+
|
285 |
+
if input_text:
|
286 |
+
# Detect emotion
|
287 |
+
emotion_data = emotion_classifier(input_text)[0]
|
288 |
+
emotion = emotion_data['label']
|
289 |
+
confidence = emotion_data['score']
|
290 |
+
|
291 |
+
# Adjust pitch and speed
|
292 |
+
settings = emotion_settings.get(emotion.lower(), {"pitch": 1.0, "speed": 1.0})
|
293 |
+
pitch = settings["pitch"]
|
294 |
+
speed = settings["speed"]
|
295 |
+
|
296 |
+
# Generate audio
|
297 |
+
audio_path = "output.wav"
|
298 |
+
tts_model.tts_to_file(text=input_text, file_path=audio_path, speed=speed, pitch=pitch)
|
299 |
+
|
300 |
+
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
301 |
+
else:
|
302 |
+
return "Please provide input text or file", None
|
303 |
+
except Exception as e:
|
304 |
+
# Return error message if something goes wrong
|
305 |
+
return f"Error: {str(e)}", None
|
306 |
+
|
307 |
+
# Define Gradio interface
|
308 |
+
iface = gr.Interface(
|
309 |
+
fn=emotion_aware_tts_pipeline,
|
310 |
+
inputs=[
|
311 |
+
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
312 |
+
gr.File(label="Upload a Text File")
|
313 |
+
],
|
314 |
+
outputs=[
|
315 |
+
gr.Textbox(label="Detected Emotion"),
|
316 |
+
gr.Audio(label="Generated Audio")
|
317 |
+
],
|
318 |
+
title="Emotion-Aware Text-to-Speech",
|
319 |
+
description="Input text or upload a text file to detect the emotion and generate audio with emotion-aware modulation."
|
320 |
+
)
|
321 |
+
|
322 |
+
# Launch Gradio interface
|
323 |
+
iface.launch()
|