Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
from google.colab import drive
|
2 |
drive.mount('/content/drive')
|
3 |
|
4 |
-
|
5 |
-
|
6 |
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
11 |
!pip install --upgrade numpy tensorflow transformers TTS
|
12 |
|
@@ -28,7 +29,7 @@ text = "I am feeling excited today!"
|
|
28 |
emotion, confidence = detect_emotion(text)
|
29 |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
30 |
|
31 |
-
|
32 |
|
33 |
import torch
|
34 |
import librosa
|
@@ -52,27 +53,6 @@ def generate_emotional_speech(text, emotion):
|
|
52 |
"shame": {"pitch": 0.8, "speed": 0.85}, # Quiet, subdued tone
|
53 |
|
54 |
}
|
55 |
-
|
56 |
-
import librosa
|
57 |
-
import soundfile as sf
|
58 |
-
|
59 |
-
def adjust_pitch(audio_path, pitch_factor):
|
60 |
-
# Load audio
|
61 |
-
y, sr = librosa.load(audio_path)
|
62 |
-
# Adjust pitch
|
63 |
-
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor)
|
64 |
-
# Save adjusted audio
|
65 |
-
sf.write(audio_path, y_shifted, sr)
|
66 |
-
|
67 |
-
def adjust_speed(audio_path, speed_factor):
|
68 |
-
# Load the audio file
|
69 |
-
y, sr = librosa.load(audio_path)
|
70 |
-
|
71 |
-
# Adjust the speed (this alters the duration of the audio)
|
72 |
-
y_speeded = librosa.effects.time_stretch(y, speed_factor)
|
73 |
-
|
74 |
-
# Save the adjusted audio
|
75 |
-
sf.write(audio_path, y_speeded, sr)
|
76 |
|
77 |
# Retrieve pitch and speed based on detected emotion
|
78 |
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0})
|
@@ -97,6 +77,29 @@ emotion = "happy"
|
|
97 |
output_audio = generate_emotional_speech("Welcome to the smart library!", emotion)
|
98 |
print(f"Generated Speech Saved At: {output_audio}")
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
"""Integrating the Workflow"""
|
101 |
|
102 |
from IPython.display import Audio, display
|
@@ -213,7 +216,7 @@ tokenizer.save_pretrained(tokenizer_save_path)
|
|
213 |
|
214 |
print("Model and tokenizer saved to Google Drive.")
|
215 |
|
216 |
-
|
217 |
|
218 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
219 |
|
@@ -231,7 +234,7 @@ tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
|
|
231 |
|
232 |
print("Fine-tuned model and tokenizer loaded successfully.")
|
233 |
|
234 |
-
|
235 |
|
236 |
from transformers import pipeline
|
237 |
|
@@ -243,7 +246,7 @@ text = "I feel so upset today!"
|
|
243 |
result = emotion_classifier(text)
|
244 |
print(result)
|
245 |
|
246 |
-
|
247 |
|
248 |
from TTS.api import TTS
|
249 |
from TTS.utils.audio import AudioProcessor
|
@@ -271,7 +274,7 @@ save_path = "/content/drive/My Drive/fine_tuned_tacotron2.pth"
|
|
271 |
torch.save(model.state_dict(), save_path)
|
272 |
|
273 |
|
274 |
-
|
275 |
|
276 |
import gradio as gr
|
277 |
from transformers import pipeline
|
@@ -345,4 +348,4 @@ iface = gr.Interface(
|
|
345 |
)
|
346 |
|
347 |
# Launch Gradio interface
|
348 |
-
iface.launch()
|
|
|
1 |
from google.colab import drive
|
2 |
drive.mount('/content/drive')
|
3 |
|
4 |
+
"""Install Dependencies
|
5 |
+
|
6 |
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
|
7 |
|
8 |
+
"""Emotion Detection (Using Text Dataset)
|
9 |
|
10 |
+
"""
|
11 |
|
12 |
!pip install --upgrade numpy tensorflow transformers TTS
|
13 |
|
|
|
29 |
emotion, confidence = detect_emotion(text)
|
30 |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
|
31 |
|
32 |
+
"""Emotion-Aware TTS (Using Tacotron 2 or Similar)"""
|
33 |
|
34 |
import torch
|
35 |
import librosa
|
|
|
53 |
"shame": {"pitch": 0.8, "speed": 0.85}, # Quiet, subdued tone
|
54 |
|
55 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Retrieve pitch and speed based on detected emotion
|
58 |
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0})
|
|
|
77 |
output_audio = generate_emotional_speech("Welcome to the smart library!", emotion)
|
78 |
print(f"Generated Speech Saved At: {output_audio}")
|
79 |
|
80 |
+
#
|
81 |
+
import librosa
|
82 |
+
import soundfile as sf
|
83 |
+
|
84 |
+
def adjust_pitch(audio_path, pitch_factor):
|
85 |
+
# Load audio
|
86 |
+
y, sr = librosa.load(audio_path)
|
87 |
+
# Adjust pitch
|
88 |
+
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor)
|
89 |
+
# Save adjusted audio
|
90 |
+
sf.write(audio_path, y_shifted, sr)
|
91 |
+
|
92 |
+
def adjust_speed(audio_path, speed_factor):
|
93 |
+
# Load the audio file
|
94 |
+
y, sr = librosa.load(audio_path)
|
95 |
+
|
96 |
+
# Adjust the speed (this alters the duration of the audio)
|
97 |
+
y_speeded = librosa.effects.time_stretch(y, speed_factor)
|
98 |
+
|
99 |
+
# Save the adjusted audio
|
100 |
+
sf.write(audio_path, y_speeded, sr)
|
101 |
+
|
102 |
+
|
103 |
"""Integrating the Workflow"""
|
104 |
|
105 |
from IPython.display import Audio, display
|
|
|
216 |
|
217 |
print("Model and tokenizer saved to Google Drive.")
|
218 |
|
219 |
+
"""Reload the Fine-Tuned Model"""
|
220 |
|
221 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
222 |
|
|
|
234 |
|
235 |
print("Fine-tuned model and tokenizer loaded successfully.")
|
236 |
|
237 |
+
"""Test the Reloaded Model"""
|
238 |
|
239 |
from transformers import pipeline
|
240 |
|
|
|
246 |
result = emotion_classifier(text)
|
247 |
print(result)
|
248 |
|
249 |
+
"""Fine-tuning the TTS System"""
|
250 |
|
251 |
from TTS.api import TTS
|
252 |
from TTS.utils.audio import AudioProcessor
|
|
|
274 |
torch.save(model.state_dict(), save_path)
|
275 |
|
276 |
|
277 |
+
"""Set up the Gradio interface"""
|
278 |
|
279 |
import gradio as gr
|
280 |
from transformers import pipeline
|
|
|
348 |
)
|
349 |
|
350 |
# Launch Gradio interface
|
351 |
+
iface.launch()
|