Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,3 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
-
import torch
|
4 |
|
5 |
-
|
6 |
-
model_name = "AnkitAI/deberta-xlarge-base-emotions-classifier"
|
7 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
|
10 |
-
# Define the function to use the model for predictions
|
11 |
-
def classify_emotion(text):
|
12 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
13 |
-
outputs = model(**inputs)
|
14 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
15 |
-
labels = ["joy", "anger", "sadness", "fear", "surprise", "love"] # Adjust based on the actual labels used by the model
|
16 |
-
return {labels[i]: float(probs[0][i]) for i in range(len(labels))}
|
17 |
-
|
18 |
-
# Validate the input
|
19 |
-
def validate_input(text):
|
20 |
-
if len(text.strip()) == 0:
|
21 |
-
return "Please enter some text."
|
22 |
-
return classify_emotion(text)
|
23 |
-
|
24 |
-
# Define the Gradio interface
|
25 |
-
interface = gr.Interface(
|
26 |
-
fn=validate_input,
|
27 |
-
inputs=gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"),
|
28 |
-
outputs=gr.Label(label="Predicted Emotion"),
|
29 |
-
title="Emotion Classifier",
|
30 |
-
description="Enter some text and let the model predict the emotion.",
|
31 |
-
examples=["I am feeling great today!", "I am so sad and depressed.", "I am excited about the new project."],
|
32 |
-
)
|
33 |
-
|
34 |
-
# Add some custom CSS to improve the look and feel
|
35 |
-
css = """
|
36 |
-
body {
|
37 |
-
background-color: #f8f9fa;
|
38 |
-
font-family: Arial, sans-serif;
|
39 |
-
}
|
40 |
-
h1 {
|
41 |
-
color: #007bff;
|
42 |
-
}
|
43 |
-
.gradio-container {
|
44 |
-
border-radius: 10px;
|
45 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
46 |
-
}
|
47 |
-
"""
|
48 |
-
|
49 |
-
# Launch the Gradio app with custom CSS
|
50 |
-
interface.launch(server_name="0.0.0.0", server_port=8080, inline=False, css=css)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
+
gr.load("models/AnkitAI/reviews-roberta-base-sentiment-analysis").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|