File size: 834 Bytes
e8ad692
 
 
 
e1ffd40
e8ad692
b442b87
 
 
 
 
e8ad692
 
b442b87
 
 
0133274
b442b87
 
e8ad692
c03d1b8
e8ad692
 
 
 
b442b87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from transformers import pipeline

# Load the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="DAMO-NLP-SG/zero-shot-classify-SSTuning-XLM-R")

# Function to perform classification
def classify_text(text, candidate_labels):
    result = classifier(text, candidate_labels)
    return result['labels'][0], result['scores'][0]

# Define the Gradio interface
iface = gr.Interface(
    fn=classify_text,
    inputs=[
        gr.Textbox(label="Enter Text"),
        gr.Textbox(label="Enter Candidate Labels (comma-separated)")
    ],
    outputs=gr.Label(num_top_classes=1),
    live=True,
    title="Zero-Shot Classification Web App",
    description="Enter a text and candidate labels (comma-separated) to classify.",
)

# Launch the Gradio interface
iface.launch(share=True)