Spaces:
Sleeping
Sleeping
AnkitS1997
commited on
Commit
·
177e69b
1
Parent(s):
e04674a
added exception handling
Browse files- .ipynb_checkpoints/app-checkpoint.py +30 -15
- .ipynb_checkpoints/streamlit_app-checkpoint.py +26 -29
- app.py +30 -15
- streamlit_app.py +26 -29
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from PIL import Image
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
@@ -9,26 +9,41 @@ app = FastAPI()
|
|
9 |
|
10 |
app.add_middleware(
|
11 |
CORSMiddleware,
|
12 |
-
allow_origins=["*"],
|
13 |
allow_credentials=True,
|
14 |
allow_methods=["*"],
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
# Load the model and processor
|
19 |
-
|
20 |
-
model.
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
@app.post("/generate-caption/")
|
26 |
async def generate_caption(file: UploadFile = File(...)):
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from PIL import Image, UnidentifiedImageError
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
|
|
9 |
|
10 |
app.add_middleware(
|
11 |
CORSMiddleware,
|
12 |
+
allow_origins=["*"],
|
13 |
allow_credentials=True,
|
14 |
allow_methods=["*"],
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
# Load the model and processor
|
19 |
+
try:
|
20 |
+
model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
21 |
+
model.load_adapter('blip-cpu-model')
|
22 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
model.to(device)
|
25 |
+
except Exception as e:
|
26 |
+
raise RuntimeError(f"Failed to load the model or processor: {str(e)}")
|
27 |
|
28 |
@app.post("/generate-caption/")
|
29 |
async def generate_caption(file: UploadFile = File(...)):
|
30 |
+
try:
|
31 |
+
image = Image.open(io.BytesIO(await file.read()))
|
32 |
+
except UnidentifiedImageError:
|
33 |
+
# Raise a 400 error if the file is not a valid image
|
34 |
+
raise HTTPException(status_code=400, detail="Uploaded file is not a valid image.")
|
35 |
+
except Exception as e:
|
36 |
+
# Catch any other unexpected errors related to image processing
|
37 |
+
raise HTTPException(status_code=500, detail=f"An unexpected error occurred while processing the image: {str(e)}")
|
38 |
|
39 |
+
try:
|
40 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
caption_ids = model.generate(**inputs, max_length=128)
|
44 |
+
caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
45 |
+
|
46 |
+
return {"caption": caption}
|
47 |
+
except Exception as e:
|
48 |
+
# Catch any errors during the caption generation process
|
49 |
+
raise HTTPException(status_code=500, detail=f"An error occurred while generating the caption: {str(e)}")
|
.ipynb_checkpoints/streamlit_app-checkpoint.py
CHANGED
@@ -1,41 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
from PIL import Image
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
7 |
|
8 |
|
9 |
-
# @st.cache_resource
|
10 |
-
# def load_model():
|
11 |
-
# model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
12 |
-
# model.load_adapter('blip-cpu-model')
|
13 |
-
# processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
14 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
# model.to(device)
|
16 |
-
# return model, processor
|
17 |
-
|
18 |
-
# model, processor = load_model()
|
19 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
-
|
21 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
22 |
|
23 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
24 |
|
25 |
if uploaded_file is not None:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
from PIL import Image, UnidentifiedImageError
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
7 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
10 |
|
11 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
12 |
|
13 |
if uploaded_file is not None:
|
14 |
+
try:
|
15 |
+
image = Image.open(uploaded_file)
|
16 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
17 |
+
|
18 |
+
try:
|
19 |
+
files = {"file": uploaded_file.getvalue()}
|
20 |
+
print("Sending API request")
|
21 |
+
response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
22 |
+
caption = response.json().get("caption")
|
23 |
+
except requests.exceptions.RequestException as e:
|
24 |
+
st.error(f"An error occurred while making the API request: {str(e)}")
|
25 |
+
caption = "Error generating caption"
|
26 |
+
except ValueError as e:
|
27 |
+
st.error(f"An error occurred while parsing the API response: {str(e)}")
|
28 |
+
caption = "Error generating caption"
|
29 |
+
|
30 |
+
st.write("Generated Caption:")
|
31 |
+
st.write(f"**{caption}**")
|
32 |
+
|
33 |
+
except UnidentifiedImageError:
|
34 |
+
st.error("The uploaded file is not a valid image. Please upload a JPG, JPEG, or PNG file.")
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"An unexpected error occurred: {str(e)}")
|
37 |
+
else:
|
38 |
+
st.write("Please upload an image to generate a caption.")
|
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from PIL import Image
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
@@ -9,26 +9,41 @@ app = FastAPI()
|
|
9 |
|
10 |
app.add_middleware(
|
11 |
CORSMiddleware,
|
12 |
-
allow_origins=["*"],
|
13 |
allow_credentials=True,
|
14 |
allow_methods=["*"],
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
# Load the model and processor
|
19 |
-
|
20 |
-
model.
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
@app.post("/generate-caption/")
|
26 |
async def generate_caption(file: UploadFile = File(...)):
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from PIL import Image, UnidentifiedImageError
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
|
|
9 |
|
10 |
app.add_middleware(
|
11 |
CORSMiddleware,
|
12 |
+
allow_origins=["*"],
|
13 |
allow_credentials=True,
|
14 |
allow_methods=["*"],
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
# Load the model and processor
|
19 |
+
try:
|
20 |
+
model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
21 |
+
model.load_adapter('blip-cpu-model')
|
22 |
+
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
model.to(device)
|
25 |
+
except Exception as e:
|
26 |
+
raise RuntimeError(f"Failed to load the model or processor: {str(e)}")
|
27 |
|
28 |
@app.post("/generate-caption/")
|
29 |
async def generate_caption(file: UploadFile = File(...)):
|
30 |
+
try:
|
31 |
+
image = Image.open(io.BytesIO(await file.read()))
|
32 |
+
except UnidentifiedImageError:
|
33 |
+
# Raise a 400 error if the file is not a valid image
|
34 |
+
raise HTTPException(status_code=400, detail="Uploaded file is not a valid image.")
|
35 |
+
except Exception as e:
|
36 |
+
# Catch any other unexpected errors related to image processing
|
37 |
+
raise HTTPException(status_code=500, detail=f"An unexpected error occurred while processing the image: {str(e)}")
|
38 |
|
39 |
+
try:
|
40 |
+
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
caption_ids = model.generate(**inputs, max_length=128)
|
44 |
+
caption = processor.decode(caption_ids[0], skip_special_tokens=True)
|
45 |
+
|
46 |
+
return {"caption": caption}
|
47 |
+
except Exception as e:
|
48 |
+
# Catch any errors during the caption generation process
|
49 |
+
raise HTTPException(status_code=500, detail=f"An error occurred while generating the caption: {str(e)}")
|
streamlit_app.py
CHANGED
@@ -1,41 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
from PIL import Image
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
7 |
|
8 |
|
9 |
-
# @st.cache_resource
|
10 |
-
# def load_model():
|
11 |
-
# model = Blip2ForConditionalGeneration.from_pretrained("ybelkada/blip2-opt-2.7b-fp16-sharded")
|
12 |
-
# model.load_adapter('blip-cpu-model')
|
13 |
-
# processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
14 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
# model.to(device)
|
16 |
-
# return model, processor
|
17 |
-
|
18 |
-
# model, processor = load_model()
|
19 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
-
|
21 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
22 |
|
23 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
24 |
|
25 |
if uploaded_file is not None:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
from PIL import Image, UnidentifiedImageError
|
4 |
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
5 |
import torch
|
6 |
import io
|
7 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
st.title("Image Captioning with Fine-Tuned BLiPv2 Model")
|
10 |
|
11 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
12 |
|
13 |
if uploaded_file is not None:
|
14 |
+
try:
|
15 |
+
image = Image.open(uploaded_file)
|
16 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
17 |
+
|
18 |
+
try:
|
19 |
+
files = {"file": uploaded_file.getvalue()}
|
20 |
+
print("Sending API request")
|
21 |
+
response = requests.post("http://0.0.0.0:8502/generate-caption/", files=files)
|
22 |
+
caption = response.json().get("caption")
|
23 |
+
except requests.exceptions.RequestException as e:
|
24 |
+
st.error(f"An error occurred while making the API request: {str(e)}")
|
25 |
+
caption = "Error generating caption"
|
26 |
+
except ValueError as e:
|
27 |
+
st.error(f"An error occurred while parsing the API response: {str(e)}")
|
28 |
+
caption = "Error generating caption"
|
29 |
+
|
30 |
+
st.write("Generated Caption:")
|
31 |
+
st.write(f"**{caption}**")
|
32 |
+
|
33 |
+
except UnidentifiedImageError:
|
34 |
+
st.error("The uploaded file is not a valid image. Please upload a JPG, JPEG, or PNG file.")
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"An unexpected error occurred: {str(e)}")
|
37 |
+
else:
|
38 |
+
st.write("Please upload an image to generate a caption.")
|