File size: 6,742 Bytes
ab5f91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddc268d
ab5f91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d031d0
fe984aa
 
 
 
 
 
 
 
 
 
 
ab5f91a
b04a1c8
ab5f91a
 
 
 
 
b7ea8ed
 
67deb0b
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ea8ed
67deb0b
 
b7ea8ed
 
d14c9fe
25c6586
d14c9fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3efbabd
 
 
d14c9fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# import packages
import gradio as gr
import copy
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import chromadb
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader
from chromadb.config import Settings
from datasets import load_dataset
import numpy as np
from tqdm import tqdm
import shutil
import os
from chromadb.utils import embedding_functions
import gradio as gr
from PIL import Image
import requests
from io import BytesIO
from transformers import pipeline
from bark import SAMPLE_RATE, generate_audio, preload_models
import json

# Initialize the Llama model
llm = Llama(
    ## original model
    # model_path=hf_hub_download(
    #     repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
    #     filename="Phi-3-mini-4k-instruct-q4.gguf",
    # ),
    ## compressed model
    model_path=hf_hub_download(
        repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
        filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
    ),
    n_ctx=2048,
    n_gpu_layers=50,  # Adjust based on your VRAM
)

# use of clip model for embedding
client = chromadb.PersistentClient(path="DB")

embedding_function = OpenCLIPEmbeddingFunction()
image_loader = ImageLoader() # must be if you reads from URIs

# initialize separate collection for image and text data
def create_collection(name_image_collection,name_text_collection):
    collection_images = client.create_collection(
        name=name_image_collection,
        embedding_function=embedding_function,
        data_loader=image_loader)
    
    collection_text = client.create_collection(
        name=name_text_collection,
        embedding_function=embedding_function,
        )
    return collection_images, collection_text
collection_images,collection_text = create_collection(name_image_collection = "collection_images",name_text_collection = "collection_text")
# Get the uris to the images
IMAGE_FOLDER = 'images'


image_uris = sorted([os.path.join(IMAGE_FOLDER, image_name) for image_name in os.listdir(IMAGE_FOLDER) if not image_name.endswith('.txt')])
ids = [str(i) for i in range(len(image_uris))]

collection_images.add(ids=ids, uris=image_uris)

# adding text collections

default_ef = embedding_functions.DefaultEmbeddingFunction()
TEXT_FOLDER = "text"
text_pth = sorted([os.path.join(TEXT_FOLDER, image_name) for image_name in os.listdir(TEXT_FOLDER) if image_name.endswith('.txt')])

list_of_text = []
for text in text_pth:
    with open(text, 'r') as f:
        text = f.read()
        list_of_text.append(text)

ids_txt_list = ['id'+str(i) for i in range(len(list_of_text))]

collection_text.add(
    documents = list_of_text,
    ids =ids_txt_list
)

# Initialize the transcriber
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")

# Preload TTS models
preload_models()

image_path = "dom_bremen.jpg"
absolute_path = os.path.abspath(image_path)

def transcribe(audio):
    sr, y = audio
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    return transcriber({"sampling_rate": sr, "raw": y})["text"]

fixed_prompt = "en_speaker_5"

def generate_audio_output(text):
    audio_arr = generate_audio(text, history_prompt=fixed_prompt)
    audio_arr = (audio_arr * 32767).astype(np.int16)
    return (SAMPLE_RATE, audio_arr)

# Function to retrieve and generate text based on input query
def generate_text(message, max_tokens=150, temperature=0.2, top_p=0.9):
    try:
        # Retrieve context and image from vector store
        retrieved_image = collection_images.query(query_texts=message, include=['data'], n_results=1)
        context_text = collection_text.query(query_texts=message, n_results=1)

        context = context_text['documents'][0] if context_text else "No relevant context found."
        image_data = retrieved_image['uris'][0] if retrieved_image else None
        image_url = image_data if image_data else None

        # Log the image URL for debugging
        print(f"Retrieved image URL: {image_url}")

        # Create prompt template for LLM
        prompt_template = (
            f"Context: {context}\n\n"
            f"Question: {message}\n\n"
            f"You are a guide to city of Bremen from Germany, generate response based on context."
        )

        # Generate text using the language model
        output = llm(
                prompt_template,
                temperature=temperature,
                top_p=top_p,
                top_k=50,
                repeat_penalty=1.1,
                max_tokens=max_tokens,
            )

        # Process the output
        input_string = output['choices'][0]['text'].strip()
        cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
        continuous_text = '\n'.join(cleaned_text.split('\n'))

        return continuous_text, image_url[0]
    except Exception as e:
        return f"Error: {str(e)}", None

# Function to load and display an image from a file path
def load_image_from_path(file_path):
    try:
        img = Image.open(file_path)
        return img
    except Exception as e:
        print(f"Error loading image: {str(e)}")
        return None

def process_audio(audio):
    # Transcribe the audio
    # transcribed_text = transcribe(audio)
    message = "Bremen Schnoor"
    text_output, image_path = generate_text(message)
    if image_path:
        image_output = load_image_from_path(image_path)
    else:
        image_output = None  # Handle cases where no image is retrieved
    # return text_output, image_output
    # Generate audio output
    audio_output = generate_audio_output(text_output)
    return text_output,audio_output,image_output

def gen_tts(text):
    audio_arr = generate_audio(text, history_prompt=fixed_prompt)
    audio_arr = (audio_arr * 32767).astype(np.int16)
    return (SAMPLE_RATE, audio_arr)

# Define the Gradio interface
# with gr.Blocks() as app:
demo = gr.Interface(
        fn=process_audio,
        inputs=gr.Audio(sources=["microphone"], label="Input Audio"),
        outputs=[
            gr.Textbox(label="Generated Text"),
            gr.Audio(label="Generated Audio"),
            gr.Image(label="Retrieved Image")  # New output component for the image
        ],
        title="moinBremen - Your Personal Tour Guide for our City of Bremen",
        description="Ask your question about Bremen by speaking into the microphone. The system will transcribe your question, generate a response, and read it out loud.",
        css=""".gradio-container {
        background: url('file=/content/dom_bremen.jpg') no-repeat center center fixed;
        background-size: cover;
        }""",
        cache_examples=False,
    )
demo.launch(allowed_paths=[absolute_path])