Spaces:
Running
Running
# import packages | |
import gradio as gr | |
import copy | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import chromadb | |
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction | |
from chromadb.utils.data_loaders import ImageLoader | |
from chromadb.config import Settings | |
from datasets import load_dataset | |
import numpy as np | |
from tqdm import tqdm | |
import shutil | |
import os | |
from chromadb.utils import embedding_functions | |
import gradio as gr | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
from transformers import pipeline | |
from bark import SAMPLE_RATE, generate_audio, preload_models | |
# Initialize the Llama model | |
llm = Llama( | |
## original model | |
# model_path=hf_hub_download( | |
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf", | |
# filename="Phi-3-mini-4k-instruct-q4.gguf", | |
# ), | |
## compressed model | |
model_path=hf_hub_download( | |
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF", | |
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf", | |
), | |
n_ctx=2048, | |
n_gpu_layers=50, # Adjust based on your VRAM | |
) | |
# use of clip model for embedding | |
client = chromadb.PersistentClient(path="DB") | |
embedding_function = OpenCLIPEmbeddingFunction() | |
image_loader = ImageLoader() # must be if you reads from URIs | |
# initialize separate collection for image and text data | |
collection_images = client.create_collection( | |
name='collection_images', | |
embedding_function=embedding_function, | |
data_loader=image_loader) | |
collection_text = client.create_collection( | |
name='collection_text', | |
embedding_function=embedding_function, | |
) | |
# Get the uris to the images | |
IMAGE_FOLDER = 'Moin_Von_Bremen/images' | |
image_uris = sorted([os.path.join(IMAGE_FOLDER, image_name) for image_name in os.listdir(IMAGE_FOLDER) if not image_name.endswith('.txt')]) | |
ids = [str(i) for i in range(len(image_uris))] | |
collection_images.add(ids=ids, uris=image_uris) |