Spaces:
Sleeping
Sleeping
# import packages | |
import gradio as gr | |
import copy | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import chromadb | |
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction | |
from chromadb.utils.data_loaders import ImageLoader | |
from chromadb.config import Settings | |
from datasets import load_dataset | |
import numpy as np | |
from tqdm import tqdm | |
import shutil | |
import os | |
from chromadb.utils import embedding_functions | |
import gradio as gr | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
from transformers import pipeline | |
from bark import SAMPLE_RATE, generate_audio, preload_models | |
import json | |
# Initialize the Llama model | |
llm = Llama( | |
## original model | |
# model_path=hf_hub_download( | |
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf", | |
# filename="Phi-3-mini-4k-instruct-q4.gguf", | |
# ), | |
## compressed model | |
model_path=hf_hub_download( | |
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF", | |
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf", | |
), | |
n_ctx=2048, | |
n_gpu_layers=50, # Adjust based on your VRAM | |
) | |
# use of clip model for embedding | |
client = chromadb.PersistentClient(path="DB") | |
embedding_function = OpenCLIPEmbeddingFunction() | |
image_loader = ImageLoader() # must be if you reads from URIs | |
# initialize separate collection for image and text data | |
collection_images = client.create_collection( | |
name='collection_images', | |
embedding_function=embedding_function, | |
data_loader=image_loader) | |
collection_text = client.create_collection( | |
name='collection_text', | |
embedding_function=embedding_function, | |
) | |
# Get the uris to the images | |
IMAGE_FOLDER = 'images' | |
image_uris = sorted([os.path.join(IMAGE_FOLDER, image_name) for image_name in os.listdir(IMAGE_FOLDER) if not image_name.endswith('.txt')]) | |
ids = [str(i) for i in range(len(image_uris))] | |
collection_images.add(ids=ids, uris=image_uris) | |
# Path to the backup file | |
load_path = 'text_collection_backup.json' | |
# Load the data from the JSON file | |
with open(load_path, 'r') as f: | |
loaded_data = json.load(f) | |
# Extract the documents and IDs | |
loaded_documents = loaded_data['documents'] | |
loaded_ids = loaded_data['ids'] | |
# Assuming 'client' is already set up for ChromaDB | |
# Create or get a collection to store the loaded data | |
# collection_text = client.create_collection( | |
# name='collection_text', # Ensure the collection name is consistent if required | |
# embedding_function=default_ef # Use the same embedding function as before | |
# ) | |
# Add data to the collection | |
collection_text.add( | |
documents=loaded_documents, | |
ids=loaded_ids | |
) | |
# Initialize the transcriber | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en",device ='cuda') | |
# Preload TTS models | |
preload_models() | |
image_path = "dom_bremen.jpg" | |
absolute_path = os.path.abspath(image_path) | |
def transcribe(audio): | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"] | |
fixed_prompt = "en_speaker_5" | |
def generate_audio_output(text): | |
audio_arr = generate_audio(text, history_prompt=fixed_prompt) | |
audio_arr = (audio_arr * 32767).astype(np.int16) | |
return (SAMPLE_RATE, audio_arr) | |
# Function to retrieve and generate text based on input query | |
def generate_text(message, max_tokens=150, temperature=0.2, top_p=0.9): | |
try: | |
# Retrieve context and image from vector store | |
retrieved_image = collection_images.query(query_texts=message, include=['data'], n_results=1) | |
context_text = collection_text.query(query_texts=message, n_results=1) | |
context = context_text['documents'][0] if context_text else "No relevant context found." | |
image_data = retrieved_image['uris'][0] if retrieved_image else None | |
image_url = image_data if image_data else None | |
# Log the image URL for debugging | |
print(f"Retrieved image URL: {image_url}") | |
# Create prompt template for LLM | |
prompt_template = ( | |
f"Context: {context}\n\n" | |
f"Question: {message}\n\n" | |
f"You are a guide to city of Bremen from Germany, generate response based on context." | |
) | |
# Generate text using the language model | |
output = llm( | |
prompt_template, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=50, | |
repeat_penalty=1.1, | |
max_tokens=max_tokens, | |
) | |
# Process the output | |
input_string = output['choices'][0]['text'].strip() | |
cleaned_text = input_string.strip("[]'").replace('\\n', '\n') | |
continuous_text = '\n'.join(cleaned_text.split('\n')) | |
return continuous_text, image_url[0] | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
# Function to load and display an image from a file path | |
def load_image_from_path(file_path): | |
try: | |
img = Image.open(file_path) | |
return img | |
except Exception as e: | |
print(f"Error loading image: {str(e)}") | |
return None | |
def process_audio(audio): | |
# Transcribe the audio | |
transcribed_text = transcribe(audio) | |
text_output, image_path = generate_text(transcribed_text) | |
if image_path: | |
image_output = load_image_from_path(image_path) | |
else: | |
image_output = None # Handle cases where no image is retrieved | |
# return text_output, image_output | |
# Generate audio output | |
audio_output = generate_audio_output(text_output) | |
return text_output,audio_output,image_output | |
def gen_tts(text): | |
audio_arr = generate_audio(text, history_prompt=fixed_prompt) | |
audio_arr = (audio_arr * 32767).astype(np.int16) | |
return (SAMPLE_RATE, audio_arr) | |
# Define the Gradio interface | |
# with gr.Blocks() as app: | |
demo = gr.Interface( | |
fn=process_audio, | |
inputs=gr.Audio(sources=["microphone"], label="Input Audio"), | |
outputs=[ | |
gr.Textbox(label="Generated Text"), | |
gr.Audio(label="Generated Audio"), | |
gr.Image(label="Retrieved Image") # New output component for the image | |
], | |
title="moinBremen - Your Personal Tour Guide for our City of Bremen", | |
description="Ask your question about Bremen by speaking into the microphone. The system will transcribe your question, generate a response, and read it out loud.", | |
css=""".gradio-container { | |
background: url('file=/content/dom_bremen.jpg') no-repeat center center fixed; | |
background-size: cover; | |
}""", | |
cache_examples=False, | |
) | |
demo.launch(allowed_paths=[absolute_path]) | |