Moin_Von_Bremen / app.py
Ankitajadhav's picture
Update app.py
d14c9fe verified
raw
history blame
6.63 kB
# import packages
import gradio as gr
import copy
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import chromadb
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
from chromadb.utils.data_loaders import ImageLoader
from chromadb.config import Settings
from datasets import load_dataset
import numpy as np
from tqdm import tqdm
import shutil
import os
from chromadb.utils import embedding_functions
import gradio as gr
from PIL import Image
import requests
from io import BytesIO
from transformers import pipeline
from bark import SAMPLE_RATE, generate_audio, preload_models
import json
# Initialize the Llama model
llm = Llama(
## original model
# model_path=hf_hub_download(
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
# filename="Phi-3-mini-4k-instruct-q4.gguf",
# ),
## compressed model
model_path=hf_hub_download(
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
),
n_ctx=2048,
n_gpu_layers=50, # Adjust based on your VRAM
)
# use of clip model for embedding
client = chromadb.PersistentClient(path="DB")
embedding_function = OpenCLIPEmbeddingFunction()
image_loader = ImageLoader() # must be if you reads from URIs
# initialize separate collection for image and text data
collection_images = client.create_collection(
name='collection_images',
embedding_function=embedding_function,
data_loader=image_loader)
collection_text = client.create_collection(
name='collection_text',
embedding_function=embedding_function,
)
# Get the uris to the images
IMAGE_FOLDER = 'images'
image_uris = sorted([os.path.join(IMAGE_FOLDER, image_name) for image_name in os.listdir(IMAGE_FOLDER) if not image_name.endswith('.txt')])
ids = [str(i) for i in range(len(image_uris))]
collection_images.add(ids=ids, uris=image_uris)
# Path to the backup file
load_path = 'text_collection_backup.json'
# Load the data from the JSON file
with open(load_path, 'r') as f:
loaded_data = json.load(f)
# Extract the documents and IDs
loaded_documents = loaded_data['documents']
loaded_ids = loaded_data['ids']
# Assuming 'client' is already set up for ChromaDB
# Create or get a collection to store the loaded data
# collection_text = client.create_collection(
# name='collection_text', # Ensure the collection name is consistent if required
# embedding_function=default_ef # Use the same embedding function as before
# )
# Add data to the collection
collection_text.add(
documents=loaded_documents,
ids=loaded_ids
)
# Initialize the transcriber
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en",device ='cuda')
# Preload TTS models
preload_models()
image_path = "dom_bremen.jpg"
absolute_path = os.path.abspath(image_path)
def transcribe(audio):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
return transcriber({"sampling_rate": sr, "raw": y})["text"]
fixed_prompt = "en_speaker_5"
def generate_audio_output(text):
audio_arr = generate_audio(text, history_prompt=fixed_prompt)
audio_arr = (audio_arr * 32767).astype(np.int16)
return (SAMPLE_RATE, audio_arr)
# Function to retrieve and generate text based on input query
def generate_text(message, max_tokens=150, temperature=0.2, top_p=0.9):
try:
# Retrieve context and image from vector store
retrieved_image = collection_images.query(query_texts=message, include=['data'], n_results=1)
context_text = collection_text.query(query_texts=message, n_results=1)
context = context_text['documents'][0] if context_text else "No relevant context found."
image_data = retrieved_image['uris'][0] if retrieved_image else None
image_url = image_data if image_data else None
# Log the image URL for debugging
print(f"Retrieved image URL: {image_url}")
# Create prompt template for LLM
prompt_template = (
f"Context: {context}\n\n"
f"Question: {message}\n\n"
f"You are a guide to city of Bremen from Germany, generate response based on context."
)
# Generate text using the language model
output = llm(
prompt_template,
temperature=temperature,
top_p=top_p,
top_k=50,
repeat_penalty=1.1,
max_tokens=max_tokens,
)
# Process the output
input_string = output['choices'][0]['text'].strip()
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
continuous_text = '\n'.join(cleaned_text.split('\n'))
return continuous_text, image_url[0]
except Exception as e:
return f"Error: {str(e)}", None
# Function to load and display an image from a file path
def load_image_from_path(file_path):
try:
img = Image.open(file_path)
return img
except Exception as e:
print(f"Error loading image: {str(e)}")
return None
def process_audio(audio):
# Transcribe the audio
transcribed_text = transcribe(audio)
text_output, image_path = generate_text(transcribed_text)
if image_path:
image_output = load_image_from_path(image_path)
else:
image_output = None # Handle cases where no image is retrieved
# return text_output, image_output
# Generate audio output
audio_output = generate_audio_output(text_output)
return text_output,audio_output,image_output
def gen_tts(text):
audio_arr = generate_audio(text, history_prompt=fixed_prompt)
audio_arr = (audio_arr * 32767).astype(np.int16)
return (SAMPLE_RATE, audio_arr)
# Define the Gradio interface
# with gr.Blocks() as app:
demo = gr.Interface(
fn=process_audio,
inputs=gr.Audio(sources=["microphone"], label="Input Audio"),
outputs=[
gr.Textbox(label="Generated Text"),
gr.Audio(label="Generated Audio"),
gr.Image(label="Retrieved Image") # New output component for the image
],
title="moinBremen - Your Personal Tour Guide for our City of Bremen",
description="Ask your question about Bremen by speaking into the microphone. The system will transcribe your question, generate a response, and read it out loud.",
css=""".gradio-container {
background: url('file=/content/dom_bremen.jpg') no-repeat center center fixed;
background-size: cover;
}""",
cache_examples=False,
)
demo.launch(allowed_paths=[absolute_path])