Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,9 +12,13 @@ llm = Llama(
|
|
12 |
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
13 |
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
14 |
# ),
|
|
|
|
|
|
|
|
|
15 |
model_path=hf_hub_download(
|
16 |
-
repo_id="
|
17 |
-
filename="
|
18 |
),
|
19 |
n_ctx=2048,
|
20 |
n_gpu_layers=50, # Adjust based on your VRAM
|
@@ -26,26 +30,26 @@ class VectorStore:
|
|
26 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
27 |
self.chroma_client = chromadb.Client()
|
28 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
29 |
-
|
30 |
# def populate_vectors(self, texts):
|
31 |
# embeddings = self.embedding_model.encode(texts, batch_size=32).tolist()
|
32 |
# for text, embedding in zip(texts, embeddings, ids):
|
33 |
# self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id])
|
34 |
|
35 |
-
|
36 |
def populate_vectors(self, dataset):
|
37 |
# Select the text columns to concatenate
|
38 |
-
|
39 |
-
recipe = dataset['train']['recipe_new'][:
|
40 |
-
allergy = dataset['train']['allergy_type'][:
|
41 |
-
ingredients = dataset['train']['ingredients_alternatives'][:
|
42 |
|
43 |
# Concatenate the text from both columns
|
44 |
-
texts = [f"{rep} {ingr} {alle}" for rep, ingr,alle in zip(recipe, ingredients,allergy)]
|
45 |
for i, item in enumerate(texts):
|
46 |
embeddings = self.embedding_model.encode(item).tolist()
|
47 |
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
|
48 |
-
|
49 |
def search_context(self, query, n_results=1):
|
50 |
query_embedding = self.embedding_model.encode([query]).tolist()
|
51 |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
@@ -55,101 +59,59 @@ class VectorStore:
|
|
55 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
|
56 |
vector_store = VectorStore("embedding_vector")
|
57 |
vector_store.populate_vectors(dataset)
|
58 |
-
def format_recipe(input_string):
|
59 |
-
# Clean up the input
|
60 |
-
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
|
61 |
-
|
62 |
-
# Split the text into lines
|
63 |
-
lines = cleaned_text.split('\n')
|
64 |
-
|
65 |
-
# Initialize sections
|
66 |
-
title = lines[0]
|
67 |
-
ingredients = []
|
68 |
-
instructions = []
|
69 |
-
substitutions = []
|
70 |
|
71 |
-
# Extract ingredients and instructions
|
72 |
-
in_instructions = False
|
73 |
-
for line in lines[1:]:
|
74 |
-
if line.startswith("Instructions:"):
|
75 |
-
in_instructions = True
|
76 |
-
continue
|
77 |
-
|
78 |
-
if in_instructions:
|
79 |
-
if line.strip(): # Check for non-empty lines
|
80 |
-
instructions.append(line.strip())
|
81 |
-
else:
|
82 |
-
if line.strip(): # Check for non-empty lines
|
83 |
-
ingredients.append(line.strip())
|
84 |
-
|
85 |
-
# Gather substitutions from the last few lines
|
86 |
-
for line in lines:
|
87 |
-
if ':' in line:
|
88 |
-
substitutions.append(line.strip())
|
89 |
|
90 |
-
|
91 |
-
formatted_recipe = f"## {title}\n\n### Ingredients:\n"
|
92 |
-
formatted_recipe += '\n'.join(f"- {item}" for item in ingredients) + "\n\n"
|
93 |
-
formatted_recipe += "### Instructions:\n" + '\n'.join(f"{i + 1}. {line}" for i, line in enumerate(instructions)) + "\n\n"
|
94 |
-
|
95 |
-
if substitutions:
|
96 |
-
formatted_recipe += "### Substitutions:\n" + '\n'.join(f"- **{line.split(':')[0].strip()}**: {line.split(':')[1].strip()}" for line in substitutions) + "\n"
|
97 |
-
return formatted_recipe
|
98 |
-
# print(formatted_recipe)
|
99 |
-
def generate_text(
|
100 |
-
message,
|
101 |
-
history: list[tuple[str, str]],
|
102 |
-
system_message,
|
103 |
-
max_tokens,
|
104 |
-
temperature,
|
105 |
-
top_p,
|
106 |
-
):
|
107 |
# Retrieve context from vector store
|
108 |
context_results = vector_store.search_context(message, n_results=1)
|
109 |
context = context_results[0] if context_results else ""
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
|
118 |
-
|
119 |
output = llm(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
# Define the Gradio interface
|
134 |
-
demo = gr.
|
135 |
-
generate_text,
|
|
|
|
|
|
|
|
|
136 |
title="llama-cpp-python on GPU with ChromaDB",
|
137 |
description="Running LLM with context retrieval from ChromaDB",
|
138 |
examples=[
|
139 |
["I have leftover rice, what can I make out of it?"],
|
140 |
-
["
|
|
|
|
|
|
|
|
|
141 |
],
|
142 |
cache_examples=False,
|
143 |
-
retry_btn=None,
|
144 |
-
undo_btn="Delete Previous",
|
145 |
-
clear_btn="Clear",
|
146 |
-
additional_inputs=[
|
147 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
148 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
149 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
150 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
151 |
-
],
|
152 |
)
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
demo.launch()
|
|
|
|
12 |
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
13 |
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
14 |
# ),
|
15 |
+
# model_path=hf_hub_download(
|
16 |
+
# repo_id="Ankitajadhav/Phi-3-mini-4k-instruct-q4.gguf",
|
17 |
+
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
18 |
+
# ),
|
19 |
model_path=hf_hub_download(
|
20 |
+
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
|
21 |
+
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
|
22 |
),
|
23 |
n_ctx=2048,
|
24 |
n_gpu_layers=50, # Adjust based on your VRAM
|
|
|
30 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
31 |
self.chroma_client = chromadb.Client()
|
32 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
33 |
+
## entire dataset
|
34 |
# def populate_vectors(self, texts):
|
35 |
# embeddings = self.embedding_model.encode(texts, batch_size=32).tolist()
|
36 |
# for text, embedding in zip(texts, embeddings, ids):
|
37 |
# self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id])
|
38 |
|
39 |
+
## subsetting
|
40 |
def populate_vectors(self, dataset):
|
41 |
# Select the text columns to concatenate
|
42 |
+
title = dataset['train']['title_cleaned'][:5000] # Limiting to 100 examples for the demo
|
43 |
+
recipe = dataset['train']['recipe_new'][:5000]
|
44 |
+
allergy = dataset['train']['allergy_type'][:5000]
|
45 |
+
ingredients = dataset['train']['ingredients_alternatives'][:5000]
|
46 |
|
47 |
# Concatenate the text from both columns
|
48 |
+
texts = [f"{tit} {rep} {ingr} {alle}" for tit, rep, ingr,alle in zip(title, recipe, ingredients,allergy)]
|
49 |
for i, item in enumerate(texts):
|
50 |
embeddings = self.embedding_model.encode(item).tolist()
|
51 |
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
|
52 |
+
## Method to populate the vector store with embeddings from a dataset
|
53 |
def search_context(self, query, n_results=1):
|
54 |
query_embedding = self.embedding_model.encode([query]).tolist()
|
55 |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
|
|
59 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
|
60 |
vector_store = VectorStore("embedding_vector")
|
61 |
vector_store.populate_vectors(dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def generate_text(message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Retrieve context from vector store
|
66 |
context_results = vector_store.search_context(message, n_results=1)
|
67 |
context = context_results[0] if context_results else ""
|
68 |
|
69 |
+
# Create the prompt template
|
70 |
+
prompt_template = (
|
71 |
+
f"SYSTEM: You are a recipe generating bot.\n"
|
72 |
+
f"SYSTEM: {context}\n"
|
73 |
+
f"USER: {message}\n"
|
74 |
+
f"ASSISTANT:\n"
|
75 |
+
)
|
76 |
|
77 |
+
# Generate text using the language model
|
78 |
output = llm(
|
79 |
+
prompt_template,
|
80 |
+
# max_new_tokens=256,
|
81 |
+
temperature=0.3,
|
82 |
+
top_p=0.95,
|
83 |
+
top_k=40,
|
84 |
+
repeat_penalty=1.1,
|
85 |
+
max_tokens=600,
|
86 |
+
# repetition_penalty=1.1
|
87 |
+
)
|
88 |
+
|
89 |
+
# Process the output
|
90 |
+
input_string = output['choices'][0]['text'].strip()
|
91 |
+
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
|
92 |
+
continuous_text = '\n'.join(cleaned_text.split('\n'))
|
93 |
+
return continuous_text
|
94 |
|
95 |
# Define the Gradio interface
|
96 |
+
demo = gr.Interface(
|
97 |
+
fn=generate_text,
|
98 |
+
inputs=[
|
99 |
+
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
|
100 |
+
],
|
101 |
+
outputs=gr.Textbox(label="Generated Text"),
|
102 |
title="llama-cpp-python on GPU with ChromaDB",
|
103 |
description="Running LLM with context retrieval from ChromaDB",
|
104 |
examples=[
|
105 |
["I have leftover rice, what can I make out of it?"],
|
106 |
+
["I just have some milk and chocolate, what dessert can I make?"],
|
107 |
+
["I am allergic to coconut milk, what can I use instead in a Thai curry?"],
|
108 |
+
["Can you suggest a vegan breakfast recipe?"],
|
109 |
+
["How do I make a perfect scrambled egg?"],
|
110 |
+
["Can you guide me through making a soufflé?"],
|
111 |
],
|
112 |
cache_examples=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
demo.launch()
|
117 |
+
|