Spaces:
Runtime error
Runtime error
Ankitajadhav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,18 +5,22 @@ from llama_cpp import Llama
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import chromadb
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Initialize the Llama model
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
# Initialize ChromaDB Vector Store
|
22 |
class VectorStore:
|
@@ -38,9 +42,6 @@ class VectorStore:
|
|
38 |
# Example initialization (assuming you've already populated the vector store)
|
39 |
vector_store = VectorStore("embedding_vector")
|
40 |
|
41 |
-
# Populate with your data if not already done
|
42 |
-
# vector_store.populate_vectors(your_texts, your_ids)
|
43 |
-
|
44 |
def generate_text(
|
45 |
message,
|
46 |
history: list[tuple[str, str]],
|
@@ -58,40 +59,40 @@ def generate_text(
|
|
58 |
input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] "
|
59 |
input_prompt += f"{message} [/INST] "
|
60 |
|
|
|
|
|
61 |
temp = ""
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Define the Gradio interface
|
77 |
demo = gr.ChatInterface(
|
78 |
generate_text,
|
79 |
-
title="llama-cpp-python on GPU with ChromaDB",
|
80 |
-
description="Running LLM with context retrieval from ChromaDB",
|
81 |
examples=[
|
82 |
["I have leftover rice, what can I make out of it?"],
|
83 |
["Can I make lunch for two people with this?"],
|
|
|
84 |
],
|
85 |
cache_examples=False,
|
86 |
retry_btn=None,
|
87 |
undo_btn="Delete Previous",
|
88 |
clear_btn="Clear",
|
89 |
-
additional_inputs=[
|
90 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
91 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
92 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
93 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
94 |
-
],
|
95 |
)
|
96 |
|
97 |
if __name__ == "__main__":
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import chromadb
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
import logging
|
9 |
+
|
10 |
+
# Initialize logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
|
13 |
# Initialize the Llama model
|
14 |
+
try:
|
15 |
+
llm = Llama(
|
16 |
+
model_path="./models/Phi-3-mini-4k-instruct-gguf",
|
17 |
+
n_ctx=2048,
|
18 |
+
n_gpu_layers=50, # Adjust based on your VRAM
|
19 |
+
)
|
20 |
+
logging.info("Llama model loaded successfully.")
|
21 |
+
except Exception as e:
|
22 |
+
logging.error(f"Error loading Llama model: {e}")
|
23 |
+
raise
|
24 |
|
25 |
# Initialize ChromaDB Vector Store
|
26 |
class VectorStore:
|
|
|
42 |
# Example initialization (assuming you've already populated the vector store)
|
43 |
vector_store = VectorStore("embedding_vector")
|
44 |
|
|
|
|
|
|
|
45 |
def generate_text(
|
46 |
message,
|
47 |
history: list[tuple[str, str]],
|
|
|
59 |
input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] "
|
60 |
input_prompt += f"{message} [/INST] "
|
61 |
|
62 |
+
logging.info("Input prompt:\n%s", input_prompt) # Debugging output
|
63 |
+
|
64 |
temp = ""
|
65 |
+
try:
|
66 |
+
output = llm(
|
67 |
+
input_prompt,
|
68 |
+
temperature=temperature,
|
69 |
+
top_p=top_p,
|
70 |
+
top_k=40,
|
71 |
+
repeat_penalty=1.1,
|
72 |
+
max_tokens=max_tokens,
|
73 |
+
stop=["", " \n", "ASSISTANT:", "USER:", "SYSTEM:"],
|
74 |
+
stream=True,
|
75 |
+
)
|
76 |
+
for out in output:
|
77 |
+
temp += out["choices"][0]["text"]
|
78 |
+
logging.info("Model output:\n%s", temp) # Log model output
|
79 |
+
yield temp
|
80 |
+
except Exception as e:
|
81 |
+
logging.error(f"Error during text generation: {e}")
|
82 |
+
yield "An error occurred during text generation."
|
83 |
|
84 |
# Define the Gradio interface
|
85 |
demo = gr.ChatInterface(
|
86 |
generate_text,
|
|
|
|
|
87 |
examples=[
|
88 |
["I have leftover rice, what can I make out of it?"],
|
89 |
["Can I make lunch for two people with this?"],
|
90 |
+
["Some good dessert with leftover cake"]
|
91 |
],
|
92 |
cache_examples=False,
|
93 |
retry_btn=None,
|
94 |
undo_btn="Delete Previous",
|
95 |
clear_btn="Clear",
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
|
98 |
if __name__ == "__main__":
|