import re import cv2 import numpy as np import pytesseract from pytesseract import Output import gradio as gr #image preprocessing function #grayscale image def get_grayscale(image): return cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) # noise removal def remove_noise(image): return cv2.medianBlur(image,5) #thresholding def thresholding(image): return cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] #dilation def dilate(image): kernel = np.ones((5,5),np.uint8) return cv2.dilate(image, kernel, iterations = 1) #erosion def erode(image): kernel = np.ones((5,5),np.uint8) return cv2.erode(image, kernel, iterations = 1) #opening - erosion followed by dilation def opening(image): kernel = np.ones((5,5),np.uint8) return cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel) #canny edge detection def canny(image): return cv2.Canny(image, 100, 200) #skew correction def deskew(image): coords = np.column_stack(np.where(image > 0)) angle = cv2.minAreaRect(coords)[-1] if angle < -45: angle = -(90 + angle) else: angle = -angle (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) return rotated #template matching def match_template(image, template): return cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED) def extract_text_from_image(img): # Convert To PIL Image im_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) gray = get_grayscale(im_rgb) noise_remove = remove_noise(gray) # thresh = thresholding(noise_remove) text = pytesseract.image_to_string(noise_remove) return text app = gr.Interface( fn=extract_text_from_image, inputs=gr.Image(label="upload image"), outputs= gr.Textbox() ) app.launch()