Spaces:
Paused
Paused
Ankitnau25
commited on
Commit
·
a2585c8
1
Parent(s):
4a0c081
Add application file
Browse files- Dockerfile +17 -0
- app.py +201 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
RUN useradd -m -u 1000 user
|
5 |
+
USER user
|
6 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
7 |
+
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
12 |
+
|
13 |
+
COPY --chown=user . /app
|
14 |
+
EXPOSE 7860
|
15 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
16 |
+
|
17 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLanguageModel
|
2 |
+
from unsloth.chat_templates import get_chat_template
|
3 |
+
import re
|
4 |
+
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
5 |
+
|
6 |
+
from langchain_core.callbacks import (
|
7 |
+
AsyncCallbackManagerForLLMRun,
|
8 |
+
CallbackManagerForLLMRun,
|
9 |
+
)
|
10 |
+
from langchain_core.language_models import BaseChatModel, SimpleChatModel
|
11 |
+
from langchain_core.messages import AIMessageChunk, BaseMessage, HumanMessage
|
12 |
+
from langchain.schema import AIMessage, HumanMessage
|
13 |
+
import gradio as gr
|
14 |
+
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
15 |
+
from langchain_core.runnables import run_in_executor
|
16 |
+
|
17 |
+
#loading model
|
18 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
19 |
+
model_name = "Ankitnau25/govtbot-llama3.1-v1",
|
20 |
+
max_seq_length = 8192,
|
21 |
+
load_in_4bit = True,
|
22 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
23 |
+
)
|
24 |
+
# loading tokenizer
|
25 |
+
tokenizer = get_chat_template(
|
26 |
+
tokenizer,
|
27 |
+
chat_template = "alpaca", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
|
28 |
+
mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style
|
29 |
+
map_eos_token = True, # Maps <|im_end|> to </s> instead
|
30 |
+
)
|
31 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
32 |
+
|
33 |
+
def predict (inp_text):
|
34 |
+
messages = [
|
35 |
+
{"from": "human", "value": f"{inp_text}"},
|
36 |
+
]
|
37 |
+
inputs = tokenizer.apply_chat_template(
|
38 |
+
messages,
|
39 |
+
tokenize = True,
|
40 |
+
add_generation_prompt = True, # Must add for generation
|
41 |
+
return_tensors = "pt",
|
42 |
+
).to("cuda")
|
43 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
44 |
+
outputs = model.generate(input_ids = inputs, use_cache = True ,temperature = 0.1,max_new_tokens = 512)
|
45 |
+
result = tokenizer.batch_decode(outputs)
|
46 |
+
# print(result)
|
47 |
+
return filter_user_assistant_msgs(result[0])
|
48 |
+
|
49 |
+
def filter_user_assistant_msgs(text):
|
50 |
+
msg_pattern = r".*Response:\n(.*?)<\|im_end\|>"
|
51 |
+
match = re.match(msg_pattern, text, re.DOTALL)
|
52 |
+
if match:
|
53 |
+
message = match.group(1).strip()
|
54 |
+
else:
|
55 |
+
message = text
|
56 |
+
return message
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
#defining custom Langchain chat model
|
61 |
+
class CustomChatModelAdvanced(BaseChatModel):
|
62 |
+
"""A custom chat model that echoes the first `n` characters of the input.
|
63 |
+
|
64 |
+
When contributing an implementation to LangChain, carefully document
|
65 |
+
the model including the initialization parameters, include
|
66 |
+
an example of how to initialize the model and include any relevant
|
67 |
+
links to the underlying models documentation or API.
|
68 |
+
|
69 |
+
Example:
|
70 |
+
|
71 |
+
.. code-block:: python
|
72 |
+
|
73 |
+
model = CustomChatModel(n=2)
|
74 |
+
result = model.invoke([HumanMessage(content="hello")])
|
75 |
+
result = model.batch([[HumanMessage(content="hello")],
|
76 |
+
[HumanMessage(content="world")]])
|
77 |
+
"""
|
78 |
+
|
79 |
+
model_name: str
|
80 |
+
"""The name of the model"""
|
81 |
+
n: int
|
82 |
+
"""The number of characters from the last message of the prompt to be echoed."""
|
83 |
+
|
84 |
+
def _generate(
|
85 |
+
self,
|
86 |
+
messages: List[BaseMessage],
|
87 |
+
stop: Optional[List[str]] = None,
|
88 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
89 |
+
**kwargs: Any,
|
90 |
+
) -> ChatResult:
|
91 |
+
"""Override the _generate method to implement the chat model logic.
|
92 |
+
|
93 |
+
This can be a call to an API, a call to a local model, or any other
|
94 |
+
implementation that generates a response to the input prompt.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
messages: the prompt composed of a list of messages.
|
98 |
+
stop: a list of strings on which the model should stop generating.
|
99 |
+
If generation stops due to a stop token, the stop token itself
|
100 |
+
SHOULD BE INCLUDED as part of the output. This is not enforced
|
101 |
+
across models right now, but it's a good practice to follow since
|
102 |
+
it makes it much easier to parse the output of the model
|
103 |
+
downstream and understand why generation stopped.
|
104 |
+
run_manager: A run manager with callbacks for the LLM.
|
105 |
+
"""
|
106 |
+
# Replace this with actual logic to generate a response from a list
|
107 |
+
# of messages.
|
108 |
+
last_message = messages[-1]
|
109 |
+
tokens = predict(last_message)
|
110 |
+
message = AIMessage(
|
111 |
+
content=tokens,
|
112 |
+
additional_kwargs={}, # Used to add additional payload (e.g., function calling request)
|
113 |
+
response_metadata={ # Use for response metadata
|
114 |
+
"time_in_seconds": 3,
|
115 |
+
},
|
116 |
+
)
|
117 |
+
##
|
118 |
+
|
119 |
+
generation = ChatGeneration(message=message)
|
120 |
+
return ChatResult(generations=[generation])
|
121 |
+
|
122 |
+
def _stream(
|
123 |
+
self,
|
124 |
+
messages: List[BaseMessage],
|
125 |
+
stop: Optional[List[str]] = None,
|
126 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
127 |
+
**kwargs: Any,
|
128 |
+
) -> Iterator[ChatGenerationChunk]:
|
129 |
+
"""Stream the output of the model.
|
130 |
+
|
131 |
+
This method should be implemented if the model can generate output
|
132 |
+
in a streaming fashion. If the model does not support streaming,
|
133 |
+
do not implement it. In that case streaming requests will be automatically
|
134 |
+
handled by the _generate method.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
messages: the prompt composed of a list of messages.
|
138 |
+
stop: a list of strings on which the model should stop generating.
|
139 |
+
If generation stops due to a stop token, the stop token itself
|
140 |
+
SHOULD BE INCLUDED as part of the output. This is not enforced
|
141 |
+
across models right now, but it's a good practice to follow since
|
142 |
+
it makes it much easier to parse the output of the model
|
143 |
+
downstream and understand why generation stopped.
|
144 |
+
run_manager: A run manager with callbacks for the LLM.
|
145 |
+
"""
|
146 |
+
last_message = messages[-1]
|
147 |
+
tokens = last_message.content[: self.n]
|
148 |
+
|
149 |
+
for token in tokens:
|
150 |
+
chunk = ChatGenerationChunk(message=AIMessageChunk(content=token))
|
151 |
+
|
152 |
+
if run_manager:
|
153 |
+
# This is optional in newer versions of LangChain
|
154 |
+
# The on_llm_new_token will be called automatically
|
155 |
+
run_manager.on_llm_new_token(token, chunk=chunk)
|
156 |
+
|
157 |
+
yield chunk
|
158 |
+
|
159 |
+
# Let's add some other information (e.g., response metadata)
|
160 |
+
chunk = ChatGenerationChunk(
|
161 |
+
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
|
162 |
+
)
|
163 |
+
if run_manager:
|
164 |
+
# This is optional in newer versions of LangChain
|
165 |
+
# The on_llm_new_token will be called automatically
|
166 |
+
run_manager.on_llm_new_token(token, chunk=chunk)
|
167 |
+
yield chunk
|
168 |
+
|
169 |
+
@property
|
170 |
+
def _llm_type(self) -> str:
|
171 |
+
"""Get the type of language model used by this chat model."""
|
172 |
+
return "echoing-chat-model-advanced"
|
173 |
+
|
174 |
+
@property
|
175 |
+
def _identifying_params(self) -> Dict[str, Any]:
|
176 |
+
"""Return a dictionary of identifying parameters.
|
177 |
+
|
178 |
+
This information is used by the LangChain callback system, which
|
179 |
+
is used for tracing purposes make it possible to monitor LLMs.
|
180 |
+
"""
|
181 |
+
return {
|
182 |
+
# The model name allows users to specify custom token counting
|
183 |
+
# rules in LLM monitoring applications (e.g., in LangSmith users
|
184 |
+
# can provide per token pricing for their model and monitor
|
185 |
+
# costs for the given LLM.)
|
186 |
+
"model_name": self.model_name,
|
187 |
+
}
|
188 |
+
llm_model = CustomChatModelAdvanced(model_name='unsloth_llama3.1',n=4)
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
def predict_chat(message, history):
|
193 |
+
history_langchain_format = []
|
194 |
+
for human, ai in history:
|
195 |
+
history_langchain_format.append(HumanMessage(content=human))
|
196 |
+
history_langchain_format.append(AIMessage(content=ai))
|
197 |
+
history_langchain_format.append(HumanMessage(content=message))
|
198 |
+
gpt_response = llm_model(history_langchain_format)
|
199 |
+
return gpt_response.content
|
200 |
+
|
201 |
+
gr.ChatInterface(predict_chat).launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
unsloth[colab-new] @ git+https://github.com/sebdg/unsloth.git
|
2 |
+
xformers<0.0.27
|
3 |
+
trl<0.9.0
|
4 |
+
peft
|
5 |
+
accelerate
|
6 |
+
bitsandbytes
|
7 |
+
gradio
|
8 |
+
gradio[oauth]
|
9 |
+
tensorboard
|
10 |
+
langchain
|
11 |
+
langchain-community
|