Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import pandas as pd | |
from streamlit_option_menu import option_menu | |
from bardapi import Bard | |
from getvalues import getValues | |
from pymongo import MongoClient | |
from transformers import pipeline, Conversation | |
classifyr = pipeline("zero-shot-classification") | |
convo = pipeline("conversational") | |
# classifi = pipeline(model="facebook/bart-large-mnli") | |
uri = os.environ["MONGO_CONNECTION_STRING"] | |
client = MongoClient(uri, tlsCertificateKeyFile="database/cert.pem") | |
db = client["myapp"] | |
col = db["reminders"] | |
bardkey = os.environ.get("BARD_API_KEY") | |
bard = Bard(token=bardkey) | |
def view_rem(): | |
allrem = list(col.find()) | |
remdata = pd.DataFrame(allrem) | |
st.dataframe(remdata) | |
def Chatbot(): | |
st.title("Chatbot") | |
if query := st.chat_input("Enter your message"): | |
ans = classifyr(query,candidate_labels=["reminders", "general conversation"]) | |
if ans["labels"][0] == "reminders": | |
values = getValues(query.lower()) | |
with st.chat_message("assistant"): | |
st.write(values) | |
col.insert_one(values) | |
elif ans["labels"][0] == "general conversation": | |
umsg = bard.get_answer(query)["content"] | |
with st.chat_message("assistant"): | |
st.write(umsg) | |
Chatbot() | |
def Create_Reminder(): | |
st.title("Create Reminder") | |
message = st.text_input("Share your plan of today") | |
time = str(st.time_input("Time")) | |
date = str(st.date_input("Date")) | |