Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from peft import (
|
6 |
+
LoraConfig,
|
7 |
+
PeftModel,
|
8 |
+
prepare_model_for_kbit_training,
|
9 |
+
get_peft_model,
|
10 |
+
)
|
11 |
+
model_name = "google/gemma-2-2b-it"
|
12 |
+
lora_model_name="Anlam-Lab/gemma-2-2b-it-anlamlab-SA-Chatgpt4mini"
|
13 |
+
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
@torch.no_grad()
|
17 |
+
def load_model():
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_name,
|
21 |
+
device_map=device,
|
22 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
23 |
+
low_cpu_mem_usage=True
|
24 |
+
)
|
25 |
+
model = PeftModel.from_pretrained(model, lora_model_name)
|
26 |
+
model.eval()
|
27 |
+
return model, tokenizer
|
28 |
+
|
29 |
+
model, tokenizer = load_model()
|
30 |
+
|
31 |
+
def generate_response(text):
|
32 |
+
example = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>Bir duygu analisti olarak sana verilen metinleri analiz et ve aşağıdaki kategorilerden yalnızca birini seçerek metnin duygu durumunu belirle:Positive,Negative,Neutral<|eot_id|><|start_header_id|>user<|end_header_id|>{text}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
33 |
+
inputs = tokenizer(example, return_tensors="pt")
|
34 |
+
with torch.no_grad():
|
35 |
+
start_time = time.time()
|
36 |
+
model_output = model(**inputs)
|
37 |
+
inference_time = time.time() - start_time
|
38 |
+
logits = model_output.logits
|
39 |
+
probabilities = F.softmax(logits, dim=-1)
|
40 |
+
top_probs, top_tokens = torch.topk(probabilities[0, -1, :], k=10)
|
41 |
+
predicted_label = tokenizer.decode(top_tokens[0])
|
42 |
+
return predicted_label
|
43 |
+
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=generate_response,
|
46 |
+
inputs=gr.Textbox(lines=5, placeholder="Metninizi buraya girin..."),
|
47 |
+
outputs=gr.Textbox(lines=5, label="Model Çıktısı"),
|
48 |
+
title="Anlam-Lab",
|
49 |
+
examples=[
|
50 |
+
["Akıllı saati uzun süre kullandım ve şık tasarımı, harika sağlık takibi özellikleri ve uzun pil ömrüyle çok memnun kaldım."],
|
51 |
+
["Ürünü aldım ama pil ömrü kısa, ekran parlaklığı yetersiz ve sağlık takibi doğru sonuçlar vermedi."],
|
52 |
+
]
|
53 |
+
)
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
iface.launch()
|