File size: 8,614 Bytes
b6a1d8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import json
import random
from llm_utils import *
DATA_PATHS = {
"addsub": "./dataset/AddSub/AddSub.json",
#"aqua": "./dataset/AQuA/test.json",
#"bigbench_date": "./dataset/Bigbench_Date/task.json",
#"object_tracking": "./dataset/Bigbench_object_tracking/task.json",
"coin_flip": "./dataset/coin_flip/coin_flip.json",
"commonsensqa": "./dataset/CommonsenseQA/dev_rand_split.jsonl",
"gsm8k": "./dataset/grade-school-math/test.jsonl",
"last_letters": "./dataset/last_letters/last_letters.json",
"multiarith": "./dataset/MultiArith/MultiArith.json",
"strategyqa": "./dataset/StrategyQA/task.json",
"singleeq": "./dataset/SingleEq/questions.json",
"svamp": "./dataset/SVAMP/SVAMP.json",
}
# https://review-of-my-life.blogspot.com/2017/11/python-dict-shuffle.html
def shuffleDict(d):
keys = list(d.keys())
random.shuffle(keys)
[(key, d[key]) for key in keys]
random.shuffle(keys)
[(key, d[key]) for key in keys]
random.shuffle(keys)
keys = [(key, d[key]) for key in keys]
#keys = d(keys)
return dict(keys)
def sample_type_demo(num_type=1):
decoder = json.JSONDecoder()
all_demo = {}
for data, datapath in DATA_PATHS.items():
'''
if data == "aqua":
questions = []
with open(datapath) as f:
lines = f.readlines()
for line in lines:
json_res = decoder.raw_decode(line)[0]
choice = "(" + "(".join(json_res["options"])
choice = choice.replace("(", " (").replace(")", ") ")
choice = "Answer Choices:" + choice
questions.append(json_res["question"].strip() + " " + choice)
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
'''
if data == "gsm8k":
questions = []
with open(datapath) as f:
lines = f.readlines()
for line in lines:
json_res = decoder.raw_decode(line)[0]
questions.append(json_res["question"].strip())
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
elif data == "commonsensqa":
questions = []
with open(datapath) as f:
lines = f.readlines()
for line in lines:
json_res = decoder.raw_decode(line)[0]
choice = "Answer Choices:"
for c in json_res["question"]["choices"]:
choice += " ("
choice += c["label"]
choice += ") "
choice += c["text"]
questions.append(json_res["question"]["stem"].strip() + " " + choice)
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
elif data in ("addsub", "multiarith", "singleeq"):
questions = []
with open(datapath) as f:
json_data = json.load(f)
for line in json_data:
q = line["sQuestion"].strip()
questions.append(q)
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
elif data == "strategyqa":
questions = []
with open(datapath) as f:
json_data = json.load(f)["examples"]
for line in json_data:
q = line["input"].strip()
questions.append(q)
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
elif data == "svamp":
questions = []
with open(datapath) as f:
json_data = json.load(f)
for line in json_data:
q = line["Body"].strip() + " " + line["Question"].strip()
questions.append(q)
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
elif data in ("coin_flip", "last_letters"):
questions = []
with open(datapath) as f:
json_data = json.load(f)
json_data = json_data["examples"]
for line in json_data:
q = line["question"]
questions.append(q)
questions = random.sample(questions, num_type)
if data not in all_demo.keys():
all_demo[data] = []
for que in questions:
que_string = "Question: " + que + "\n"
all_demo[data].append(que_string)
#demo = "Question: " + que + "\n" + "Type: " + data + "\n\n"
#all_demo.append(demo)
#random.shuffle(all_demo)
#all_demo = "".join(all_demo)
return all_demo
def type_for_dataset(dataset_name):
if dataset_name in ("addsub", "aqua", "gsm8k", "multiarith", "singleeq", "svamp"):
type = "arithmetic"
elif dataset_name == "commonsensqa":
type = "commonsense-mc"
elif dataset_name == "strategyqa":
type = "commonsense-verify"
elif dataset_name == "coin_flip":
type = "symbolic-coin"
elif dataset_name == "last_letters":
type = "symbolic-letter"
#elif dataset_name in ("commonsensqa", "strategyqa"):
# type = "commonsense"
#elif dataset_name in ("coin_flip", "last_letters"):
# type = "symbolic"
else:
type = None
return type
def get_type_prompt(all_demo):
total_prompt = []
for dataset_name, question_string in all_demo.items():
demo = question_string[0] + "Type: " + type_for_dataset(dataset_name) + "\n\n"
total_prompt += demo
total_prompt = "".join(total_prompt)
return total_prompt
def identify_type(question, engine):
with open('./demos/type', 'r') as f:
typedemo = f.read()
typedemo += "Question: " + question + "\nOutput the Type, choosing from <'arithmetic','commonsense-mc','commonsense-verify','symbolic-coin', 'symbolic-letter'>: "
response = decoder_for_gpt3(typedemo, 32, temperature=0, engine=engine)
response = response.strip().lower()
return response
if __name__ == "__main__":
all_demo = sample_type_demo(num_type=1)
#print(all_demo)
total_prompt = get_type_prompt(all_demo)
print(total_prompt)
with open('./demos/type', 'w') as f:
data_json = json.dumps(total_prompt)
f.write(data_json + "\n")
#with open('./demos/type', 'r') as f:
# data = f.read()
# print(type(data))
question = "Did the 40th president of the United States forward lolcats to his friends?"
engine = "text-davinci-003"
res = identify_type(question, engine)
print(res)
|