File size: 20,311 Bytes
7ead7d1 49079cf 7b757e9 49079cf 7b757e9 b6a1d8d 49079cf b6a1d8d 49079cf 7b757e9 49079cf b6a1d8d 5808cd0 49079cf 7ead7d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import gradio as gr
import openai # For GPT-3 API ...
import re
import threading
import json
import os
from collections import Counter
from llm_utils import *
from utils import *
from retrieval_utils import *
openai.api_key = os.getenv("api_key")
COT_PROMPT = "Let's think step by step."
DIRECT_ANS_PROMPT = "The answer is"
#EXAMPLES = {
# 'arithmetic': ['Marco and his dad went strawberry picking. Together they collected strawberries that weighed 36 pounds. On the way back Marco \' dad lost 8 pounds of strawberries. Marco\'s strawberries now weighed 12 pounds. How much did his dad\'s strawberries weigh now?'],
# 'commonsense-verify': [['is the brain located in the torso?'], ['Is entire Common Era minuscule to lifespan of some trees?'], ['Did the Football War last at least a month?']],
# 'commonsens-mc': ['What would someone use a personal key for? Answer Choices: (A) car stand (B) at hotel (C) own home (D) front door (E) bus depot', ],
# 'symbolic-letter': ['Take the last letters of each words in \"Kristopher Deb Jake Tammy\" and concatenate them.'],
# 'symbolic-coin': ['A coin is heads up. Isela flips the coin. Leslie flips the coin. Stacy flips the coin. Ingrid does not flip the coin. Is the coin still heads up? Note that \"flip\" here means \"reverse\".']
#}
EXAMPLES = ['Take the last letters of each words in \"Kristopher Deb Jake Tammy\" and concatenate them.', \
'is the brain located in the torso?', 'Is entire Common Era minuscule to lifespan of some trees?', 'Did the Football War last at least a month?', \
'What would someone use a personal key for? Answer Choices: (A) car stand (B) at hotel (C) own home (D) front door (E) bus depot', \
'A coin is heads up. Isela flips the coin. Leslie flips the coin. Stacy flips the coin. Ingrid does not flip the coin. Is the coin still heads up? Note that \"flip\" here means \"reverse\".', \
'Marco and his dad went strawberry picking. Together they collected strawberries that weighed 36 pounds. On the way back Marco \' dad lost 8 pounds of strawberries. Marco\'s strawberries now weighed 12 pounds. How much did his dad\'s strawberries weigh now?']
global lock #global lock, repo
lock = threading.Lock()
def answer_extraction_prompt(datatype):
if datatype == "commonsense-mc":
ans_prompt = "\nTherefore, among A through E, the answer is"
elif datatype == "commonsense-verify":
ans_prompt = "\nTherefore, the answer (Yes or No) is"
elif datatype == "arithmetic":
ans_prompt = "\nTherefore, the answer (arabic numerals) is"
elif datatype == "symbolic-letter":
ans_prompt = "\nTherefore, the answer is"
elif datatype == "symbolic-coin":
ans_prompt = "\nTherefore, the answer (Yes or No) is"
else: #if datatype == "Undefined"
ans_prompt = "\nTherefore, the answer is"
return ans_prompt
def zero_shot(datatype, question, engine):
ANS_EXTRACTION_PROMPT = answer_extraction_prompt(datatype)
ANS_EXTRACTION_PROMPT = ANS_EXTRACTION_PROMPT.replace("\nTherefore, ", "")
ANS_EXTRACTION_PROMPT = ANS_EXTRACTION_PROMPT[0].upper() + ANS_EXTRACTION_PROMPT[1:]
input = "Q: " + question + "\n" + "A: " + ANS_EXTRACTION_PROMPT
ans_response = decoder_for_gpt3(input, max_length=32, engine=engine)
ans_response = answer_cleansing_zero_shot(datatype, ans_response)
if ans_response == "":
ans_response = "VOID"
return ans_response
def highlight_knowledge(entities, retrieved_knowledge):
str_md = retrieved_knowledge
for ent in entities:
ent_md = {}
m_pos = re.finditer(ent, retrieved_knowledge, re.IGNORECASE) #[(s,e),(s,e)]
for m in m_pos:
s, e = m.start(), m.end()
if retrieved_knowledge[s:e] not in ent_md.keys():
ent_ = retrieved_knowledge[s:e]
ent_md[ent_] = '<span style="background-color: lightcoral"> **' + ent_ + '** </span>'
for e_ori, e_md in ent_md.items():
print(e_ori)
print(e_md)
str_md = str_md.replace(e_ori, e_md)
return str_md
def zero_cot_consi(question, engine):
input = "Q: " + question + "\n" + "A: " + COT_PROMPT
cot_responses = decoder_for_gpt3_consistency(input,max_length=256, engine=engine) #list of cots
return cot_responses
def auto_cot_consi(question, demo_text, engine):
input = demo_text + "Q: " + question + "\n" + "A: " + COT_PROMPT
cot_responses = decoder_for_gpt3_consistency(input,max_length=256, engine=engine) #list of cots
return cot_responses
def cot_revision(datatype, question, ori_cots, knowledge, engine):
ANS_EXTRACTION_PROMPT = answer_extraction_prompt(datatype)
corrected_rationales = []
corrected_answers = []
correction_prompt = "Question: " + "[ " + question + "]\n"
correction_prompt += "Knowledge: " + "[ " + knowledge + "]\n"
for ori_r in ori_cots:
cor_p = correction_prompt + "Original rationale: " + "[ " + ori_r + "]\n"
cor_p += "With Knowledge given, output the revised rationale for Question in a precise and certain style by thinking step by step: "
corrected_rationale = decoder_for_gpt3(cor_p,max_length=256, temperature=0.7, engine=engine)
corrected_rationale = corrected_rationale.strip()
corrected_rationales.append(corrected_rationale)
input = "Q: " + question + "\n" + "A: " + corrected_rationale + ANS_EXTRACTION_PROMPT
ans = decoder_for_gpt3(input, max_length=32, temperature=0.7, engine=engine)
ans = answer_cleansing_zero_shot(datatype, ans)
corrected_answers.append(ans)
return corrected_rationales, corrected_answers
def consistency(arr):
len_ans = len(arr)
arr_acounts = Counter(arr)
ans_freq_tuple = arr_acounts.most_common(len_ans)
most_frequent_item, _ = ans_freq_tuple[0]
ans_dict = {}
for ans_freq in ans_freq_tuple:
ans, times = ans_freq
ans_dict[ans] = times/len_ans
return most_frequent_item, ans_dict
## todo: git pull
def record_feedback(single_data, feedback, store_flag):
global lock
print(f"Logging feedback...")
datatype = single_data['datatype']
data_dir = './data_pool/{dataname}_feedback'.format(dataname=datatype)
lock.acquire()
if store_flag:
single_data.update({'feedback':feedback})
with open(data_dir, "a") as f:
data_json = json.dumps(single_data)
f.write(data_json + "\n")
lock.release()
print(f"Logging finished...")
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(value="π Thank you for your valuable feedback!")
def record_feedback_agree(input_question, datatype, our_ans, zshot_ans, self_know, kb_know, refine_know, cor_ans, store_flag):
single_data = {
'question': input_question, 'datatype': datatype, 'zshot_ans': zshot_ans,
'adapter_ans': our_ans, 'self_know': self_know, 'kb_know': kb_know,
'refine_know': refine_know, 'cor_ans': cor_ans, 'feedback': ""}
return record_feedback(single_data, 'agree', store_flag)
def record_feedback_disagree(input_question, datatype, our_ans, zshot_ans, self_know, kb_know, refine_know, cor_ans, store_flag):
single_data = {
'question': input_question, 'datatype': datatype, 'zshot_ans': zshot_ans,
'adapter_ans': our_ans, 'self_know': self_know, 'kb_know': kb_know,
'refine_know': refine_know, 'cor_ans': cor_ans, 'feedback': ""}
return record_feedback(single_data, "disagree", store_flag)
def record_feedback_uncertain(input_question, datatype, our_ans, zshot_ans, self_know, kb_know, refine_know, cor_ans, store_flag):
single_data = {
'question': input_question, 'datatype': datatype, 'zshot_ans': zshot_ans,
'adapter_ans': our_ans, 'self_know': self_know, 'kb_know': kb_know,
'refine_know': refine_know, 'cor_ans': cor_ans, 'feedback': ""}
return record_feedback(single_data, 'uncertain', store_flag)
def reset():
return gr.update(value=""), gr.update(value=""), \
gr.update(visible=False), gr.update(value="", label=""), gr.update(value="", label=""), gr.update(value="", label=""), \
gr.update(value=""), gr.update(value=""), gr.update(value=""), gr.update(value="")
def identify_type(question, engine):
with open('./demos/type', 'r') as f:
typedemo = f.read()
typedemo += "Question: " + question + "\nOutput the Type, choosing from <'arithmetic','commonsense-mc','commonsense-verify','symbolic-coin', 'symbolic-letter'>: "
response = decoder_for_gpt3(typedemo, 32, temperature=0, engine=engine)
response = response.strip().lower()
response = type_cleasing(response)
return response
def load_examples(datatype):
return gr.update(examples=EXAMPLES[datatype])
def self_construction(datatype):
if datatype == "arithmetic":
fig_adr = './figs/multiarith.png'
demo_path = './demos/multiarith'
elif datatype == "commonsense-mc":
fig_adr = './figs/commonsensqa.png'
demo_path = './demos/commonsensqa'
elif datatype == "commonsense-verify":
fig_adr = './figs/strategyqa.png'
demo_path = './demos/strategyqa'
elif datatype == "symbolic-coin":
fig_adr = './figs/coin_flip.png'
demo_path = './demos/coin_flip'
elif datatype == "symbolic-letter":
fig_adr = './figs/last_letters.png'
demo_path = './demos/last_letters'
else:
pass ##todo: datatype == 'UNDEFINED'
##read corresponding demo
x, z, y =[], [], []
with open(demo_path, encoding="utf-8") as f:
json_data = json.load(f)
json_data = json_data["demo"]
for line in json_data:
x.append(line["question"])
z.append(line["rationale"])
y.append(line["pred_ans"])
index_list = list(range(len(x)))
demo_md, demo_text = "", ""
for i in index_list:
demo_text += x[i] + " " + z[i] + " " + \
DIRECT_ANS_PROMPT + " " + y[i] + ".\n\n"
demo_md += '<span style="background-color: #E0A182">' + "Q: "+ '</span>' + x[i][3:-3] + \
"<br>" + '<span style="background-color: #DD97AF">' + "A: "+ '</span>' + z[i] + " " + \
DIRECT_ANS_PROMPT + " " + y[i] + ".\n\n"
return gr.update(value="## π Self construction..."), gr.update(visible=True, label="Visualization of clustering", value=fig_adr), \
gr.update(visible=True, value=demo_md), gr.update(value=demo_text), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def self_retrieval(input_question, engine):
entities, self_retrieve_knowledge, kb_retrieve_knowledge = retrieve_for_question(input_question, engine)
entities_string = ", ".join(entities)
retr_md = "### ENTITIES:" + "<br>" + "> "+ entities_string + "\n\n"
retr_md += "### LLM-KNOWLEDGE:" + "<br>" + "> " + highlight_knowledge(entities,self_retrieve_knowledge) + "\n\n"
retr_md += "### KB-KNOWLEDGE:" + "<br>" + "> " + highlight_knowledge(entities, kb_retrieve_knowledge) + "\n\n"
return gr.update(value="## π Self retrieval..."), gr.update(visible=True, label="", value='./figs/self-retrieval.png'), \
gr.update(value=retr_md), \
gr.update(value=entities_string), gr.update(value=self_retrieve_knowledge), gr.update(value=kb_retrieve_knowledge), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def self_refinement(input_question, entities, self_retrieve_knowledge, kb_retrieve_knowledge, engine):
refine_knowledge = refine_for_question(input_question, engine, self_retrieve_knowledge, kb_retrieve_knowledge)
retr_md = "### ENTITIES:" + "<br>" + "> " + entities + "\n\n"
entities = entities.strip().strip('<p>').strip('</p>').split(", ")
retr_md += "### LLM-KNOWLEDGE:" + "<br>" + "> " + highlight_knowledge(entities, self_retrieve_knowledge) + "\n\n"
retr_md += "### KB-KNOWLEDGE:" + "<br>" + "> " + highlight_knowledge(entities, kb_retrieve_knowledge) + "\n\n"
refine_md = retr_md + "### REFINED-KNOWLEDGE:" + "<br>" + "> "
refine_md += highlight_knowledge(entities, refine_knowledge)
return gr.update(value="## πͺ Self refinement..."), gr.update(visible=True, label="", value='./figs/self-refinement.png'), \
gr.update(value=refine_md), gr.update(value=refine_knowledge), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def self_revision(input_question, datatype, demo_text, refined_knowledge, engine):
print(demo_text)
print(refined_knowledge)
ori_cots = auto_cot_consi(input_question, demo_text, engine)
cor_cots, cor_ans = cot_revision(datatype, input_question, ori_cots, refined_knowledge, engine)
cor_cots_md = "### Revised Rationales:" + "\n\n"
for cor_cot in cor_cots:
cor_cots_md += "> " + cor_cot + "\n\n"
cor_ans = ", ".join(cor_ans)
return gr.update(value="## π§ Self revision..."), gr.update(visible=True, label="", value='./figs/self-revision.png'), \
gr.update(value=cor_cots_md), gr.update(value=cor_ans), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def self_consistency(cor_ans, datatype, question, engine):
cor_ans = cor_ans.strip().split(", ")
our_ans, ans_dict = consistency(cor_ans)
zeroshot_ans = zero_shot(datatype, question, engine)
return gr.update(value="## π³ Self consistency..."), gr.update(visible=True, label="", value='./figs/self-consistency.png'), \
gr.update(value=""), gr.update(value=ans_dict, visible=True), \
gr.update(visible=True, value=our_ans), gr.update(visible=True, value=zeroshot_ans), \
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True, value='We would appreciate it very much if you could share your feedback. ')
def reset():
return gr.update(value=""), gr.update(value=""), gr.update(value=""), \
gr.update(visible=False), gr.update(value=""), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value="")
#theme from: https://huggingface.co/spaces/gradio/theme-gallery
#EveryPizza/Cartoony-Gradio-Theme
#JohnSmith9982/small_and_pretty
#bethecloud/storj_theme
#gradio/soft
with gr.Blocks(theme="bethecloud/storj_theme", css="#process_btn {background-color:#8BA3C5}") as demo:
gr.Markdown("# π ιη¨θͺιεΊηζ¨ηε’εΌΊη³»η» (Unified-Adapter) π")
with gr.Row():
with gr.Column(scale=4):
input_question = gr.Textbox(placeholder="Input question here, or select an example from below.", label="Input Question",lines=2)
store_flag = gr.Checkbox(label="Store data",value=True, interactive=True, info="If you agree to store data for research and development use:")
single_data = gr.JSON(visible=False)
with gr.Column(scale=3):
engine = gr.Dropdown(choices=['gpt-3.5-turbo','text-davinci-003', 'text-davinci-002', 'text-curie-001', 'text-babbage-001', 'text-ada-001'],
label="Engine", value="text-davinci-003", interactive=True, info="Choose the engine and have a try!")
reset_btn = gr.Button(value='RESET')
examples = gr.Examples(examples=EXAMPLES, inputs=[input_question])
with gr.Row():
with gr.Column(scale=1):
type_btn = gr.Button(value="Self-identification", variant='primary', scale=1, elem_id="process_btn")
with gr.Column(scale=3):
datatype = gr.Dropdown(choices=['arithmetic','commonsense-mc','commonsense-verify','symbolic-letter','symbolic-coin','UNDEFINED'],
label="Input Type", info="If you disagree with our output, please select manually.", scale=3)
demo_text = gr.Textbox(visible=False)
entities = gr.Textbox(visible=False)
self_know = gr.Textbox(visible=False)
kb_know = gr.Textbox(visible=False)
refine_know = gr.Textbox(visible=False)
cor_ans = gr.Textbox(visible=False)
with gr.Row():
const_btn = gr.Button(value='Self-construction', variant='primary', elem_id="process_btn")
retr_btn = gr.Button(value='Self-retrieval', variant='primary', elem_id="process_btn")
refine_btn = gr.Button(value='Self-refinement', variant='primary', elem_id="process_btn")
revis_btn = gr.Button(value='Self-revision', variant='primary', elem_id="process_btn")
consis_btn = gr.Button(value='Self-consistency', variant='primary', elem_id="process_btn")
sub_title = gr.Markdown()
with gr.Row():
with gr.Column(scale=2):
plot = gr.Image(label="Visualization of clustering", visible=False)
with gr.Column(scale=3):
md = gr.Markdown()
label = gr.Label(visible=False, label="Consistency Predictions")
ans_ours = gr.Textbox(label="Unified-Adapter Answer",visible=False)
ans_zeroshot = gr.Textbox(label="Zero-shot Answer", visible=False)
with gr.Row():
feedback_agree = gr.Button(value='π Agree', variant='secondary', visible=False)
feedback_disagree = gr.Button(value='π Disagree', variant='secondary', visible=False)
feedback_uncertain = gr.Button(value='π€ Uncertain', variant='secondary', visible=False)
feedback_ack = gr.Markdown(value='', visible=True, interactive=False)
type_btn.click(identify_type, inputs=[input_question, engine], outputs=[datatype])
const_btn.click(self_construction, inputs=[datatype], outputs=[sub_title, plot, md, demo_text, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
retr_btn.click(self_retrieval, inputs=[input_question, engine], outputs=[sub_title, plot, md, entities, self_know, kb_know, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
refine_btn.click(self_refinement, inputs=[input_question, entities, self_know, kb_know, engine], outputs=[sub_title, plot, md, refine_know, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
revis_btn.click(self_revision, inputs=[input_question, datatype, demo_text, refine_know, engine], outputs=[sub_title, plot, md, cor_ans, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
consis_btn.click(self_consistency, inputs=[cor_ans, datatype, input_question, engine], outputs=[sub_title, plot, md, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
reset_btn.click(reset, inputs=[], outputs=[input_question, datatype, sub_title, plot, md, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
feedback_agree.click(record_feedback_agree, inputs=[input_question, datatype, ans_ours, ans_zeroshot, self_know, kb_know, refine_know, cor_ans ,store_flag], outputs=[feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
feedback_disagree.click(record_feedback_disagree, inputs=[input_question, datatype, ans_ours, ans_zeroshot, self_know, kb_know, refine_know, cor_ans ,store_flag], outputs=[feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
feedback_uncertain.click(record_feedback_uncertain, inputs=[input_question, datatype, ans_ours, ans_zeroshot, self_know, kb_know, refine_know, cor_ans ,store_flag], outputs=[feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack])
demo.launch()
|