import gradio as gr import openai # For GPT-3 API ... import re import threading import json import os from collections import Counter from llm_utils import * from utils import * from retrieval_utils import * openai.api_key = os.getenv("api_key") COT_PROMPT = "Let's think step by step." DIRECT_ANS_PROMPT = "The answer is" #EXAMPLES = { # 'arithmetic': ['Marco and his dad went strawberry picking. Together they collected strawberries that weighed 36 pounds. On the way back Marco \' dad lost 8 pounds of strawberries. Marco\'s strawberries now weighed 12 pounds. How much did his dad\'s strawberries weigh now?'], # 'commonsense-verify': [['is the brain located in the torso?'], ['Is entire Common Era minuscule to lifespan of some trees?'], ['Did the Football War last at least a month?']], # 'commonsens-mc': ['What would someone use a personal key for? Answer Choices: (A) car stand (B) at hotel (C) own home (D) front door (E) bus depot', ], # 'symbolic-letter': ['Take the last letters of each words in \"Kristopher Deb Jake Tammy\" and concatenate them.'], # 'symbolic-coin': ['A coin is heads up. Isela flips the coin. Leslie flips the coin. Stacy flips the coin. Ingrid does not flip the coin. Is the coin still heads up? Note that \"flip\" here means \"reverse\".'] #} EXAMPLES = ['Take the last letters of each words in \"Kristopher Deb Jake Tammy\" and concatenate them.', \ 'Do the telescopes at Goldstone Deep Space Communications Complex work the night shift?', \ 'What would someone use a personal key for? Answer Choices: (A) car stand (B) at hotel (C) own home (D) front door (E) bus depot', \ 'David watched some nesting birds using his binoculars while on vacation. Where might David be? Answer Choices: (A) sky (B) vacation (C) forest (D) countryside (E) roof', \ 'Mary loves eating fruits. Mary paid $7.19 for berries, and $6.83 for peaches with a $20 bill. How much change did Mary receive?'] global lock #global lock, repo lock = threading.Lock() def answer_extraction_prompt(datatype): if datatype == "commonsense-mc": ans_prompt = "\nTherefore, among A through E, the answer is" elif datatype == "commonsense-verify": ans_prompt = "\nTherefore, the answer (Yes or No) is" elif datatype == "arithmetic": ans_prompt = "\nTherefore, the answer (arabic numerals) is" elif datatype == "symbolic-letter": ans_prompt = "\nTherefore, the answer is" elif datatype == "symbolic-coin": ans_prompt = "\nTherefore, the answer (Yes or No) is" else: #if datatype == "Undefined" ans_prompt = "\nTherefore, the answer is" return ans_prompt def zero_shot(datatype, question, engine): ANS_EXTRACTION_PROMPT = answer_extraction_prompt(datatype) ANS_EXTRACTION_PROMPT = ANS_EXTRACTION_PROMPT.replace("\nTherefore, ", "") ANS_EXTRACTION_PROMPT = ANS_EXTRACTION_PROMPT[0].upper() + ANS_EXTRACTION_PROMPT[1:] input = "Q: " + question + "\n" + "A: " + ANS_EXTRACTION_PROMPT ans_response = decoder_for_gpt3(input, max_length=32, engine=engine) ans_response = answer_cleansing_zero_shot(datatype, ans_response) if ans_response == "": ans_response = "VOID" return ans_response def highlight_knowledge(entities, retrieved_knowledge): str_md = retrieved_knowledge for ent in entities: ent_md = {} m_pos = re.finditer(ent, retrieved_knowledge, re.IGNORECASE) #[(s,e),(s,e)] for m in m_pos: s, e = m.start(), m.end() if retrieved_knowledge[s:e] not in ent_md.keys(): ent_ = retrieved_knowledge[s:e] ent_md[ent_] = ' **' + ent_ + '** ' for e_ori, e_md in ent_md.items(): print(e_ori) print(e_md) str_md = str_md.replace(e_ori, e_md) return str_md def zero_cot_consi(question, engine): input = "Q: " + question + "\n" + "A: " + COT_PROMPT cot_responses = decoder_for_gpt3_consistency(input,max_length=256, engine=engine) #list of cots return cot_responses def auto_cot_consi(question, demo_text, engine): input = demo_text + "Q: " + question + "\n" + "A: " + COT_PROMPT cot_responses = decoder_for_gpt3_consistency(input,max_length=256, engine=engine) #list of cots return cot_responses def cot_revision(datatype, question, ori_cots, knowledge, engine): ANS_EXTRACTION_PROMPT = answer_extraction_prompt(datatype) corrected_rationales = [] corrected_answers = [] correction_prompt = "Question: " + "[ " + question + "]\n" correction_prompt += "Knowledge: " + "[ " + knowledge + "]\n" for ori_r in ori_cots: cor_p = correction_prompt + "Original rationale: " + "[ " + ori_r + "]\n" cor_p += "With Knowledge given, output the revised rationale for Question in a precise and certain style by thinking step by step: " corrected_rationale = decoder_for_gpt3(cor_p,max_length=256, temperature=0.7, engine=engine) corrected_rationale = corrected_rationale.strip() corrected_rationales.append(corrected_rationale) input = "Q: " + question + "\n" + "A: " + corrected_rationale + ANS_EXTRACTION_PROMPT ans = decoder_for_gpt3(input, max_length=32, temperature=0.7, engine=engine) ans = answer_cleansing_zero_shot(datatype, ans) corrected_answers.append(ans) return corrected_rationales, corrected_answers def consistency(arr): len_ans = len(arr) arr_acounts = Counter(arr) ans_freq_tuple = arr_acounts.most_common(len_ans) most_frequent_item, _ = ans_freq_tuple[0] ans_dict = {} for ans_freq in ans_freq_tuple: ans, times = ans_freq ans_dict[ans] = times/len_ans return most_frequent_item, ans_dict ## todo: git pull def record_feedback(single_data, feedback, store_flag): global lock print(f"Logging feedback...") datatype = single_data['datatype'] data_dir = './data_pool/{dataname}_feedback'.format(dataname=datatype) lock.acquire() if store_flag: single_data.update({'feedback':feedback}) with open(data_dir, "a") as f: data_json = json.dumps(single_data) f.write(data_json + "\n") lock.release() print(f"Logging finished...") return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ gr.update(value="πŸ˜ƒ Thank you for your valuable feedback!") def record_feedback_agree(input_question, datatype, our_ans, zshot_ans, self_know, kb_know, refine_know, cor_ans, store_flag): single_data = { 'question': input_question, 'datatype': datatype, 'zshot_ans': zshot_ans, 'adapter_ans': our_ans, 'self_know': self_know, 'kb_know': kb_know, 'refine_know': refine_know, 'cor_ans': cor_ans, 'feedback': ""} return record_feedback(single_data, 'agree', store_flag) def record_feedback_disagree(input_question, datatype, our_ans, zshot_ans, self_know, kb_know, refine_know, cor_ans, store_flag): single_data = { 'question': input_question, 'datatype': datatype, 'zshot_ans': zshot_ans, 'adapter_ans': our_ans, 'self_know': self_know, 'kb_know': kb_know, 'refine_know': refine_know, 'cor_ans': cor_ans, 'feedback': ""} return record_feedback(single_data, "disagree", store_flag) def record_feedback_uncertain(input_question, datatype, our_ans, zshot_ans, self_know, kb_know, refine_know, cor_ans, store_flag): single_data = { 'question': input_question, 'datatype': datatype, 'zshot_ans': zshot_ans, 'adapter_ans': our_ans, 'self_know': self_know, 'kb_know': kb_know, 'refine_know': refine_know, 'cor_ans': cor_ans, 'feedback': ""} return record_feedback(single_data, 'uncertain', store_flag) def reset(): return gr.update(value=""), gr.update(value=""), \ gr.update(visible=False), gr.update(value="", label=""), gr.update(value="", label=""), gr.update(value="", label=""), \ gr.update(value=""), gr.update(value=""), gr.update(value=""), gr.update(value="") def identify_type(question, engine): with open('./demos/type', 'r') as f: typedemo = f.read() typedemo += "Question: " + question + "\nOutput the Type, choosing from <'arithmetic','commonsense-mc','commonsense-verify','symbolic-coin', 'symbolic-letter'>: " response = decoder_for_gpt3(typedemo, 32, temperature=0, engine=engine) response = response.strip().lower() response = type_cleasing(response) return response def load_examples(datatype): return gr.update(examples=EXAMPLES[datatype]) def self_construction(datatype): if datatype == "arithmetic": fig_adr = './figs/multiarith.png' demo_path = './demos/multiarith' elif datatype == "commonsense-mc": fig_adr = './figs/commonsensqa.png' demo_path = './demos/commonsensqa' elif datatype == "commonsense-verify": fig_adr = './figs/strategyqa.png' demo_path = './demos/strategyqa' elif datatype == "symbolic-coin": fig_adr = './figs/coin_flip.png' demo_path = './demos/coin_flip' elif datatype == "symbolic-letter": fig_adr = './figs/last_letters.png' demo_path = './demos/last_letters' else: pass ##todo: datatype == 'UNDEFINED' ##read corresponding demo x, z, y =[], [], [] with open(demo_path, encoding="utf-8") as f: json_data = json.load(f) json_data = json_data["demo"] for line in json_data: x.append(line["question"]) z.append(line["rationale"]) y.append(line["pred_ans"]) index_list = list(range(len(x))) demo_md, demo_text = "", "" for i in index_list: demo_text += x[i] + " " + z[i] + " " + \ DIRECT_ANS_PROMPT + " " + y[i] + ".\n\n" demo_md += '' + "Q: "+ '' + x[i][3:-3] + \ "
" + '' + "A: "+ '' + z[i] + " " + \ DIRECT_ANS_PROMPT + " " + y[i] + ".\n\n" return gr.update(value="## πŸ”­ Self construction..."), gr.update(visible=True, label="Visualization of clustering", value=fig_adr), \ gr.update(visible=True, value=demo_md), gr.update(value=demo_text), \ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def self_retrieval(input_question, engine): entities, self_retrieve_knowledge, kb_retrieve_knowledge = retrieve_for_question(input_question, engine) entities_string = ", ".join(entities) retr_md = "### ENTITIES:" + "
" + "> "+ entities_string + "\n\n" retr_md += "### LLM-KNOWLEDGE:" + "
" + "> " + highlight_knowledge(entities,self_retrieve_knowledge) + "\n\n" retr_md += "### KB-KNOWLEDGE:" + "
" + "> " + highlight_knowledge(entities, kb_retrieve_knowledge) + "\n\n" return gr.update(value="## πŸ“š Self retrieval..."), gr.update(visible=True, label="", value='./figs/self-retrieval.png'), \ gr.update(value=retr_md), \ gr.update(value=entities_string), gr.update(value=self_retrieve_knowledge), gr.update(value=kb_retrieve_knowledge), \ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def self_refinement(input_question, entities, self_retrieve_knowledge, kb_retrieve_knowledge, engine): refine_knowledge = refine_for_question(input_question, engine, self_retrieve_knowledge, kb_retrieve_knowledge) retr_md = "### ENTITIES:" + "
" + "> " + entities + "\n\n" entities = entities.strip().strip('

').strip('

').split(", ") retr_md += "### LLM-KNOWLEDGE:" + "
" + "> " + highlight_knowledge(entities, self_retrieve_knowledge) + "\n\n" retr_md += "### KB-KNOWLEDGE:" + "
" + "> " + highlight_knowledge(entities, kb_retrieve_knowledge) + "\n\n" refine_md = retr_md + "### REFINED-KNOWLEDGE:" + "
" + "> " refine_md += highlight_knowledge(entities, refine_knowledge) return gr.update(value="## πŸͺ„ Self refinement..."), gr.update(visible=True, label="", value='./figs/self-refinement.png'), \ gr.update(value=refine_md), gr.update(value=refine_knowledge), \ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def self_revision(input_question, datatype, demo_text, refined_knowledge, engine): print(demo_text) print(refined_knowledge) ori_cots = auto_cot_consi(input_question, demo_text, engine) cor_cots, cor_ans = cot_revision(datatype, input_question, ori_cots, refined_knowledge, engine) cor_cots_md = "### Revised Rationales:" + "\n\n" for cor_cot in cor_cots: cor_cots_md += "> " + cor_cot + "\n\n" cor_ans = ", ".join(cor_ans) return gr.update(value="## πŸ”§ Self revision..."), gr.update(visible=True, label="", value='./figs/self-revision.png'), \ gr.update(value=cor_cots_md), gr.update(value=cor_ans), \ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) def self_consistency(cor_ans, datatype, question, engine): cor_ans = cor_ans.strip().split(", ") our_ans, ans_dict = consistency(cor_ans) zeroshot_ans = zero_shot(datatype, question, engine) return gr.update(value="## πŸ—³ Self consistency..."), gr.update(visible=True, label="", value='./figs/self-consistency.png'), \ gr.update(value=""), gr.update(value=ans_dict, visible=True), \ gr.update(visible=True, value=our_ans), gr.update(visible=True, value=zeroshot_ans), \ gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \ gr.update(visible=True, value='We would appreciate it very much if you could share your feedback. ') def reset(): return gr.update(value=""), gr.update(value=""), gr.update(value=""), \ gr.update(visible=False), gr.update(value=""), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value="") #theme from: https://huggingface.co/spaces/gradio/theme-gallery #EveryPizza/Cartoony-Gradio-Theme #JohnSmith9982/small_and_pretty #bethecloud/storj_theme #gradio/soft with gr.Blocks(theme="bethecloud/storj_theme", css="#process_btn {background-color:#8BA3C5}") as demo: gr.Markdown("# 🌟 ι€šη”¨θ‡ͺι€‚εΊ”ηš„ζŽ¨η†ε’žεΌΊη³»η»Ÿ (AuRoRA) 🌟") with gr.Row(): with gr.Column(scale=4): input_question = gr.Textbox(placeholder="Input question here, or select an example from below.", label="Input Question",lines=2) store_flag = gr.Checkbox(label="Store data",value=True, interactive=True, info="If you agree to store data for research and development use:") single_data = gr.JSON(visible=False) with gr.Column(scale=3): engine = gr.Dropdown(choices=['gpt-3.5-turbo','text-davinci-003', 'text-davinci-002', 'text-curie-001', 'text-babbage-001', 'text-ada-001'], label="Engine", value="text-davinci-003", interactive=True, info="Choose the engine and have a try!") reset_btn = gr.Button(value='RESET') examples = gr.Examples(examples=EXAMPLES, inputs=[input_question]) with gr.Row(): with gr.Column(scale=1): type_btn = gr.Button(value="Self-identification", variant='primary', scale=1, elem_id="process_btn") with gr.Column(scale=3): datatype = gr.Dropdown(choices=['arithmetic','commonsense-mc','commonsense-verify','symbolic-letter','symbolic-coin','UNDEFINED'], label="Input Type", info="If you disagree with our output, please select manually.", scale=3) demo_text = gr.Textbox(visible=False) entities = gr.Textbox(visible=False) self_know = gr.Textbox(visible=False) kb_know = gr.Textbox(visible=False) refine_know = gr.Textbox(visible=False) cor_ans = gr.Textbox(visible=False) with gr.Row(): const_btn = gr.Button(value='Self-construction', variant='primary', elem_id="process_btn") retr_btn = gr.Button(value='Self-retrieval', variant='primary', elem_id="process_btn") refine_btn = gr.Button(value='Self-refinement', variant='primary', elem_id="process_btn") revis_btn = gr.Button(value='Self-revision', variant='primary', elem_id="process_btn") consis_btn = gr.Button(value='Self-consistency', variant='primary', elem_id="process_btn") sub_title = gr.Markdown() with gr.Row(): with gr.Column(scale=2): plot = gr.Image(label="Visualization of clustering", visible=False) with gr.Column(scale=3): md = gr.Markdown() label = gr.Label(visible=False, label="Consistency Predictions") ans_ours = gr.Textbox(label="Unified-Adapter Answer",visible=False) ans_zeroshot = gr.Textbox(label="Zero-shot Answer", visible=False) with gr.Row(): feedback_agree = gr.Button(value='😊 Agree', variant='secondary', visible=False) feedback_disagree = gr.Button(value='πŸ™ Disagree', variant='secondary', visible=False) feedback_uncertain = gr.Button(value='πŸ€” Uncertain', variant='secondary', visible=False) feedback_ack = gr.Markdown(value='', visible=True, interactive=False) type_btn.click(identify_type, inputs=[input_question, engine], outputs=[datatype]) const_btn.click(self_construction, inputs=[datatype], outputs=[sub_title, plot, md, demo_text, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) retr_btn.click(self_retrieval, inputs=[input_question, engine], outputs=[sub_title, plot, md, entities, self_know, kb_know, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) refine_btn.click(self_refinement, inputs=[input_question, entities, self_know, kb_know, engine], outputs=[sub_title, plot, md, refine_know, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) revis_btn.click(self_revision, inputs=[input_question, datatype, demo_text, refine_know, engine], outputs=[sub_title, plot, md, cor_ans, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) consis_btn.click(self_consistency, inputs=[cor_ans, datatype, input_question, engine], outputs=[sub_title, plot, md, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) reset_btn.click(reset, inputs=[], outputs=[input_question, datatype, sub_title, plot, md, label, ans_ours, ans_zeroshot, feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) feedback_agree.click(record_feedback_agree, inputs=[input_question, datatype, ans_ours, ans_zeroshot, self_know, kb_know, refine_know, cor_ans ,store_flag], outputs=[feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) feedback_disagree.click(record_feedback_disagree, inputs=[input_question, datatype, ans_ours, ans_zeroshot, self_know, kb_know, refine_know, cor_ans ,store_flag], outputs=[feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) feedback_uncertain.click(record_feedback_uncertain, inputs=[input_question, datatype, ans_ours, ans_zeroshot, self_know, kb_know, refine_know, cor_ans ,store_flag], outputs=[feedback_agree, feedback_disagree, feedback_uncertain, feedback_ack]) demo.launch()