Anniek's picture
Update app.py
aed19d9
raw
history blame
2.36 kB
from datetime import datetime
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import gradio as gr
import plotly.graph_objects as go
from huggingface_hub import from_pretrained_keras
import os
def predictAirPassengers(df, split):
ts= pd.read_csv('AirPassengers.csv')
df2 =ts.copy()
ttSplit=split/100
ts['Month']=pd.to_datetime(ts['Month'])
ts.rename(columns={'#Passengers':'Passengers'},inplace=True)
ts=ts.set_index(['Month'])
ts['months'] = [x.month for x in ts.index]
ts['years'] = [x.year for x in ts.index]
ts.reset_index(drop=True, inplace=True)
# Split Data
X=ts.drop("Passengers",axis=1)
Y= ts["Passengers"]
X_train=X[:int (len(Y)*ttSplit)]
X_test=X[int(len(Y)*ttSplit):]
Y_train=Y[:int (len(Y)*ttSplit)]
Y_test=Y[int(len(Y)*ttSplit):]
# fit the model
rf = RandomForestRegressor()
rf.fit(X_train, Y_train)
df1=df2.set_index(['Month'])
df1.rename(columns={'#Passengers':'Passengers'},inplace=True)
train=df1.Passengers[:int (len(ts.Passengers)*ttSplit)]
test=df1.Passengers[int(len(ts.Passengers)*ttSplit):]
preds=rf.predict(X_test).astype(int)
predictions=pd.DataFrame(preds,columns=['Passengers'])
predictions.index=test.index
predictions.reset_index(inplace=True)
predictions['Month']=pd.to_datetime(predictions['Month'])
print(predictions)
#combine all into one table
ts_df=df.copy()
ts_df.rename(columns={'#Passengers':'Passengers'},inplace=True)
train= ts_df[:int (len(ts_df)*ttSplit)]
test= ts_df[int(len(ts_df)*ttSplit):]
df2['Month']=pd.to_datetime(df2['Month'])
df2.rename(columns={'#Passengers':'Passengers'},inplace=True)
df3= predictions
df2['origin']='ground truth'
df3['origin']='prediction'
df4=pd.concat([df2, df3])
print(df4)
return df4
demo = gr.Interface(
fn =predictAirPassengers,
inputs = [
gr.Timeseries(label="Input for the timeseries", max_rows=1, interactive=False),
gr.Slider(1, 100, value=75, step=1, label="Train test split percentage"),
],
outputs= [
gr.LinePlot(x='Month', y='Passengers', color='origin')
#gr.Timeseries(x='Month')
],
examples=[
[os.path.join(os.path.abspath(''), "AirPassengers_dt.csv"), 75],
]
)
demo.launch()