Anniek's picture
Update app.py
aed19d9
from datetime import datetime
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import gradio as gr
import plotly.graph_objects as go
from huggingface_hub import from_pretrained_keras
import os
def predictAirPassengers(df, split):
ts= pd.read_csv('AirPassengers.csv')
df2 =ts.copy()
ttSplit=split/100
ts['Month']=pd.to_datetime(ts['Month'])
ts.rename(columns={'#Passengers':'Passengers'},inplace=True)
ts=ts.set_index(['Month'])
ts['months'] = [x.month for x in ts.index]
ts['years'] = [x.year for x in ts.index]
ts.reset_index(drop=True, inplace=True)
# Split Data
X=ts.drop("Passengers",axis=1)
Y= ts["Passengers"]
X_train=X[:int (len(Y)*ttSplit)]
X_test=X[int(len(Y)*ttSplit):]
Y_train=Y[:int (len(Y)*ttSplit)]
Y_test=Y[int(len(Y)*ttSplit):]
# fit the model
rf = RandomForestRegressor()
rf.fit(X_train, Y_train)
df1=df2.set_index(['Month'])
df1.rename(columns={'#Passengers':'Passengers'},inplace=True)
train=df1.Passengers[:int (len(ts.Passengers)*ttSplit)]
test=df1.Passengers[int(len(ts.Passengers)*ttSplit):]
preds=rf.predict(X_test).astype(int)
predictions=pd.DataFrame(preds,columns=['Passengers'])
predictions.index=test.index
predictions.reset_index(inplace=True)
predictions['Month']=pd.to_datetime(predictions['Month'])
print(predictions)
#combine all into one table
ts_df=df.copy()
ts_df.rename(columns={'#Passengers':'Passengers'},inplace=True)
train= ts_df[:int (len(ts_df)*ttSplit)]
test= ts_df[int(len(ts_df)*ttSplit):]
df2['Month']=pd.to_datetime(df2['Month'])
df2.rename(columns={'#Passengers':'Passengers'},inplace=True)
df3= predictions
df2['origin']='ground truth'
df3['origin']='prediction'
df4=pd.concat([df2, df3])
print(df4)
return df4
demo = gr.Interface(
fn =predictAirPassengers,
inputs = [
gr.Timeseries(label="Input for the timeseries", max_rows=1, interactive=False),
gr.Slider(1, 100, value=75, step=1, label="Train test split percentage"),
],
outputs= [
gr.LinePlot(x='Month', y='Passengers', color='origin')
#gr.Timeseries(x='Month')
],
examples=[
[os.path.join(os.path.abspath(''), "AirPassengers_dt.csv"), 75],
]
)
demo.launch()