import gradio as gr from transformers import ViltProcessor, ViltForQuestionAnswering import torch torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg') processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") def getAnswer(image,text): encoding = processor(image, text, return_tensors="pt") # forward pass with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits idx = logits.argmax(-1).item() predicted_answer = model.config.id2label[idx] return predicted_answer image = gr.inputs.Image(type="pil") question = gr.inputs.Textbox(label="Question about the image") answer = gr.outputs.Textbox(label="Predicted answer") examples = [["cats.jpg", "How many cats are there?"], ["astronaut.jpg", "What's the astronaut riding on?"]] title="Visual question and answering" iface = gr.Interface(fn=getAnswer, inputs=[image, question], outputs=answer, examples=examples, title=title, enable_queue=True) iface.launch(debug=True )