File size: 11,548 Bytes
b0ff21d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import streamlit as st
import pandas as pd
import numpy as np
from oocsi_source import OOCSI
from uuid import uuid4
from streamlit_extras.switch_page_button import switch_page
import random
import dtreeviz
import xgboost as xgb
from dtreeviz.trees import dtreeviz
from sklearn.tree import DecisionTreeClassifier
import graphviz as graphviz
from sklearn.datasets import make_moons
import base64
# import os
# os.environ["PATH"] += os.pathsep + 'D:/Program Files (x86)/Graphviz2.38/bin/'
# st.markdown("""<style>
# .stSlider {
# padding-bottom: 20px;
# }
# </style> """,
# unsafe_allow_html=True)
#Delete this page from the array of pages to visit, this way it cannot be visited twice
if 'profile2' not in st.session_state:
st.session_state.pages.remove("DecisionTree")
st.session_state.profile2= 'deleted'
if (len(st.session_state.pages)>0):
st.session_state.nextPage2 = random.randint(0, len(st.session_state.pages)-1)
st.session_state.lastQuestion= 'no'
else:
st.session_state.lastQuestion= 'yes'
if 'index2' not in st.session_state:
st.session_state.index2= 0
if 'profileIndex' not in st.session_state:
st.session_state.profileIndex= st.session_state.profileIndices[st.session_state.index2]
name= st.session_state.X_test_names.loc[st.session_state.profileIndex, "Name"]
header1, header2, header3 = st.columns([1,2,1])
characteristics1, characteristics2, characteristics3 = st.columns([1,2,1])
prediction1, prediction2, prediction3 =st.columns([1,2,1])
explanation1, explanation2, explanation3 = st.columns([1,2,1])
footer1, footer2, footer3 =st.columns([1,2,1])
evaluation1, evaluation2, evaluation3 = st.columns([1,2,1])
@st.cache_resource
def loadData():
train_df = pd.read_csv('assets/train_df.csv')
test_df = pd.read_csv('assets/test_df.csv')
X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1).copy()
return X_train, Y_train, X_test
@st.cache_resource
def trainModel(X_train,Y_train):
model = xgb.XGBClassifier().fit(X_train, Y_train)
return model
# @st.cache_resource
def createTree(_model, X_train, Y_train, X_test):
# X, y = make_moons(n_samples=20, noise=0.25, random_state=3)
# treeclf = DecisionTreeClassifier(random_state=0)
# treeclf.fit(X, y)
# viz_model= dtreeviz(treeclf, X, y, target_name="Classes",
# feature_names=["f0", "f1"], class_names=["c0", "c1"])
# clf = DecisionTreeClassifier(max_depth=3)
# clf.fit(X_train, Y_train)
# Y_pred = clf.predict(X_test)
# acc_decision_tree2 = round(clf.score(X_train, Y_train) * 100, 2)
# viz_model = dtreeviz(clf,
# X_train, Y_train,
# feature_names=X_train.columns,
# target_name='Survived',
# class_names=['Dead', 'Alive'],
# X=X_test.iloc[1]
# )
viz_model = dtreeviz(_model,
X_train, Y_train,
tree_index=0,
feature_names=list(X_train.columns),
target_name='Survived',
class_names=['Dead', 'Alive'],
X=X_test.iloc[st.session_state.profileIndex],
#depth_range_to_display=(0, 2),
show_just_path=True,
# orientation ='LR',
)
#path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg"
viz_model.save("/assets/images/prediction_path.svg")
return viz_model
def render_svg(svg):
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
st.write(html, unsafe_allow_html=True)
with header2: #header2
st.header("Explanation - Decision Tree")
st.markdown('''Decision Tree models are a non-parametric supervised learning method
commonly used for classification and regression.
They are constructed using two kinf of elements: Nodes and branches. At each node (intersection),
one of the data features is evaluated to split the observations into different paths.
At typical decision example is shown in the graph below.
''')
st.image('assets/Decision_tree.jpg',caption = 'Example of a decision tree')
st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data.
Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet.
Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made.
For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck.
''')
st.subheader(name)
XGBmodel= trainModel(st.session_state.X_train, st.session_state.Y_train)
# st.write("For debugging:")
# st.write(st.session_state.participantID)
with characteristics2:
# initialize list of lists
data = st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)
# Create the pandas DataFrame
df = pd.DataFrame(data, columns=st.session_state.X_test.columns)
st.dataframe(df)
with prediction2:
prediction = XGBmodel.predict(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
probability = XGBmodel.predict_proba(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
if prediction == 0:
prob = round((probability[0][0]*100),2)
st.markdown("The model predicts with {}% probability that {} will :red[**not survive**]".format(prob, name) )
else:
prob = round((probability[0][1]*100),2)
st.markdown("The model predicts with {}% probability that {} will :green[**survive**]".format(prob, name) )
with explanation2:
st.subheader("Visualization - Decision Tree")
# st.markdown('''Decision Tree model are a non-parametric supervised learning method
# commonly used for classification and regression.
# They are constructed using two kinf of elements: Nodes and branches. At each node (intersection),
# one of the data features is evaluated to split the observations into different paths.
# At typical decision example is shown in the graph below.
# ''')
# st.image('assets/Decision_tree.jpg')
# st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data.
# Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet.
# Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made.
# For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck.
# ''')
with st.spinner("Please be patient, we are generating a new explanation"):
viz_model = createTree(XGBmodel, st.session_state.X_train, st.session_state.Y_train, st.session_state.X_test)
# st.image("/assets/images/prediction_path.svg", width =200, use_column_width=True)
#viz_model.view()
# read in svg prediction path and display
path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg"
# st.success("Done!")
with open("/assets/images/prediction_path.svg", "r") as f:
svg = f.read()
render_svg(svg)
st.text("")
with footer2:
if (st.session_state.index2 < len(st.session_state.profileIndices)-1):
if st.button("New profile"):
st.session_state.index2 = st.session_state.index2+1
st.session_state.profileIndex = st.session_state.profileIndices[st.session_state.index2]
st.experimental_rerun()
else:
def is_user_active():
if 'user_active2' in st.session_state.keys() and st.session_state['user_active2']:
return True
else:
return False
if is_user_active():
# if st.button("Continue to evaluation"):
# st.write(" ")
with st.form("my_form2", clear_on_submit=True):
st.subheader("Evaluation")
st.write("These questions only ask for your opinion about this specific explanation")
q1 = st.select_slider(
'**1**- From the explanation, I **understand** how the algorithm works:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q2 = st.select_slider(
'**2**- This explanation of how the algorithm works is **satisfying**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q3 = st.select_slider(
'**3**- This explanation of how the algorithm works has **sufficient detail**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q4 = st.select_slider(
'**4**- This explanation of how the algorithm works seems **complete**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q5 = st.select_slider(
'**5**- This explanation of how the algorithm works **tells me how to use it**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q6 = st.select_slider(
'**6**- This explanation of how the algorithm works is **useful to my goals**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q7 = st.select_slider(
'**7**- This explanation of the algorithm shows me how **accurate** the algorithm is:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q8 = st.select_slider(
'**8**- This explanation lets me judge when I should **trust and not trust** the algorithm:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
# Every form must have a submit button.
submitted = st.form_submit_button("Submit")
if submitted:
# st.write("question 1", q1)
st.session_state.oocsi.send('EngD_HAII', {
'participant_ID': st.session_state.participantID,
'type of explanation': 'Decision tree',
'q1': q1,
'q2': q2,
'q3': q3,
'q4': q4,
'q5': q5,
'q6': q6,
'q7': q7,
'q8': q8,
})
if (st.session_state.lastQuestion =='yes'):
switch_page('finalPage')
else:
st.session_state.profileIndex =st.session_state.profileIndices[0]
switch_page(st.session_state.pages[st.session_state.nextPage2])
else:
if st.button('Continue to evaluation'):
st.session_state['user_active2']=True
st.experimental_rerun()
|