File size: 11,548 Bytes
b0ff21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import streamlit as st
import pandas as pd
import numpy as np
from oocsi_source import OOCSI
from uuid import uuid4
from streamlit_extras.switch_page_button import switch_page
import random
import dtreeviz
import xgboost as xgb
from dtreeviz.trees import dtreeviz
from sklearn.tree import DecisionTreeClassifier
import graphviz as graphviz
from sklearn.datasets import make_moons
import base64

# import os
# os.environ["PATH"] += os.pathsep + 'D:/Program Files (x86)/Graphviz2.38/bin/'

# st.markdown("""<style> 
# .stSlider {
#     padding-bottom: 20px;    
#     }
#     </style> """, 
#     unsafe_allow_html=True)

#Delete this page from the array of pages to visit, this way it cannot be visited twice
if 'profile2' not in st.session_state:
    st.session_state.pages.remove("DecisionTree")
    st.session_state.profile2= 'deleted'
    if (len(st.session_state.pages)>0):
        st.session_state.nextPage2 = random.randint(0, len(st.session_state.pages)-1)
        st.session_state.lastQuestion= 'no'
    else:
        st.session_state.lastQuestion= 'yes'


if 'index2' not in st.session_state:
    st.session_state.index2= 0    


if 'profileIndex' not in st.session_state:
    st.session_state.profileIndex= st.session_state.profileIndices[st.session_state.index2]       
    
name= st.session_state.X_test_names.loc[st.session_state.profileIndex, "Name"]



header1, header2, header3 = st.columns([1,2,1])
characteristics1, characteristics2, characteristics3 = st.columns([1,2,1])
prediction1, prediction2, prediction3 =st.columns([1,2,1])
explanation1, explanation2, explanation3 = st.columns([1,2,1])
footer1, footer2, footer3 =st.columns([1,2,1])
evaluation1, evaluation2, evaluation3 = st.columns([1,2,1])


@st.cache_resource
def loadData():
    train_df = pd.read_csv('assets/train_df.csv')
    test_df = pd.read_csv('assets/test_df.csv')
    X_train = train_df.drop("Survived", axis=1)
    Y_train = train_df["Survived"]
    X_test  = test_df.drop("PassengerId", axis=1).copy()
    return X_train, Y_train, X_test

@st.cache_resource
def trainModel(X_train,Y_train):
    model = xgb.XGBClassifier().fit(X_train, Y_train)
    return model

# @st.cache_resource
def createTree(_model, X_train, Y_train, X_test):
    # X, y = make_moons(n_samples=20, noise=0.25, random_state=3)
    # treeclf = DecisionTreeClassifier(random_state=0)
    # treeclf.fit(X, y)
    # viz_model= dtreeviz(treeclf, X, y, target_name="Classes",
    #     feature_names=["f0", "f1"], class_names=["c0", "c1"])
    # clf = DecisionTreeClassifier(max_depth=3)
    # clf.fit(X_train, Y_train)

    # Y_pred = clf.predict(X_test)  
    # acc_decision_tree2 = round(clf.score(X_train, Y_train) * 100, 2)
    # viz_model = dtreeviz(clf,
    #                      X_train, Y_train,
    #                     feature_names=X_train.columns,
    #                     target_name='Survived',
    #                     class_names=['Dead', 'Alive'],
    #                     X=X_test.iloc[1]  
    # ) 
    viz_model = dtreeviz(_model, 
                         X_train, Y_train,
                         tree_index=0,
                         feature_names=list(X_train.columns),
                         target_name='Survived',
                         class_names=['Dead', 'Alive'],
                         X=X_test.iloc[st.session_state.profileIndex],
                        #depth_range_to_display=(0, 2),
                        show_just_path=True,
                        # orientation ='LR',
                         )
    #path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg"
    viz_model.save("/assets/images/prediction_path.svg") 
    return viz_model

def render_svg(svg):
    """Renders the given svg string."""
    b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
    html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
    st.write(html, unsafe_allow_html=True)


with header2: #header2
    st.header("Explanation - Decision Tree")
    st.markdown('''Decision Tree models are a non-parametric supervised learning method
     commonly used for classification and regression.
     They are constructed using two kinf of elements: Nodes and branches. At each node (intersection),
     one of the data features is evaluated to split the observations into different paths.

    
    At typical decision example is shown in the graph below.    
    ''')

    st.image('assets/Decision_tree.jpg',caption = 'Example of a decision tree')

    st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data. 
    Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet. 
    Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made. 

    For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck.
     ''')
    
    st.subheader(name)
    XGBmodel= trainModel(st.session_state.X_train, st.session_state.Y_train)
    # st.write("For debugging:")
    # st.write(st.session_state.participantID)
    
with characteristics2:
    # initialize list of lists
    data = st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)
    # Create the pandas DataFrame
    df = pd.DataFrame(data, columns=st.session_state.X_test.columns)
    st.dataframe(df)


with prediction2:
    prediction =  XGBmodel.predict(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
    probability = XGBmodel.predict_proba(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
    if prediction == 0:
        prob = round((probability[0][0]*100),2)
        st.markdown("The model predicts with {}% probability  that {}  will :red[**not survive**]".format(prob, name) )
    else:
        prob = round((probability[0][1]*100),2)
        st.markdown("The model predicts with {}% probability  that {}  will :green[**survive**]".format(prob, name) )

with explanation2: 
    st.subheader("Visualization - Decision Tree")
    # st.markdown('''Decision Tree model are a non-parametric supervised learning method
    #  commonly used for classification and regression.
    #  They are constructed using two kinf of elements: Nodes and branches. At each node (intersection),
    #  one of the data features is evaluated to split the observations into different paths.

    
    # At typical decision example is shown in the graph below.    
    # ''')

    # st.image('assets/Decision_tree.jpg')

    # st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data. 
    # Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet. 
    # Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made. 

    # For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck.
    #  ''')

    

    with st.spinner("Please be patient, we are generating a new explanation"):
        viz_model = createTree(XGBmodel, st.session_state.X_train, st.session_state.Y_train, st.session_state.X_test)
    # st.image("/assets/images/prediction_path.svg", width =200, use_column_width=True)
    #viz_model.view()
     # read in svg prediction path and display
        path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg"
    # st.success("Done!")
    with open("/assets/images/prediction_path.svg", "r") as f:
        svg = f.read()
    render_svg(svg)
    
    st.text("")

with footer2:
    if (st.session_state.index2 < len(st.session_state.profileIndices)-1):
        if st.button("New profile"):
            st.session_state.index2 = st.session_state.index2+1
            st.session_state.profileIndex = st.session_state.profileIndices[st.session_state.index2]
            st.experimental_rerun()
    else:
        def is_user_active():
            if 'user_active2' in st.session_state.keys() and st.session_state['user_active2']:
                return True
            else:
                return False
        if is_user_active():
            # if st.button("Continue to evaluation"):
            #     st.write(" ")
            with st.form("my_form2", clear_on_submit=True):
                st.subheader("Evaluation")
                st.write("These questions only ask for your opinion about this specific explanation")
                q1 = st.select_slider(
                '**1**- From the explanation, I **understand** how the algorithm works:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q2 = st.select_slider(
                '**2**- This explanation of how the algorithm works is **satisfying**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q3 = st.select_slider(
                '**3**- This explanation of how the algorithm works has **sufficient detail**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q4 = st.select_slider(
                '**4**- This explanation of how the algorithm works seems **complete**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q5 = st.select_slider(
                '**5**- This explanation of how the algorithm works **tells me how to use it**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q6 = st.select_slider(
                '**6**- This explanation of how the algorithm works is **useful to my goals**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q7 = st.select_slider(
                '**7**- This explanation of the algorithm shows me how **accurate** the algorithm is:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q8 = st.select_slider(
                '**8**- This explanation lets me judge when I should **trust and not trust** the algorithm:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                # Every form must have a submit button.
                submitted = st.form_submit_button("Submit")
                if submitted:
                    # st.write("question 1", q1)
                    st.session_state.oocsi.send('EngD_HAII', {
                        'participant_ID': st.session_state.participantID,
                        'type of explanation': 'Decision tree',
                        'q1': q1,
                        'q2': q2,
                        'q3': q3,
                        'q4': q4,
                        'q5': q5,
                        'q6': q6,
                        'q7': q7,
                        'q8': q8,
                        
                        })
                    if (st.session_state.lastQuestion =='yes'): 
                        switch_page('finalPage')
                    else: 
                        st.session_state.profileIndex =st.session_state.profileIndices[0]
                        switch_page(st.session_state.pages[st.session_state.nextPage2])
        else:
            if st.button('Continue to evaluation'):
                st.session_state['user_active2']=True
                st.experimental_rerun()