File size: 8,578 Bytes
b0ff21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import streamlit as st
import pandas as pd
import numpy as np
from oocsi_source import OOCSI
from uuid import uuid4
from streamlit_extras.switch_page_button import switch_page
import random
import shap
from IPython.display import display_html
import xgboost as xgb
import matplotlib.pyplot as plt

# st.markdown("""<style> 
# .stSlider {
#     padding-bottom: 20px;    
#     }
#     </style> """, 
#     unsafe_allow_html=True)

#Delete this page from the array of pages to visit, this way it cannot be visited twice
if 'profile1' not in st.session_state:
    st.session_state.pages.remove("SHAP")
    st.session_state.profile1= 'deleted'
    if (len(st.session_state.pages)>0):
        st.session_state.nextPage1 = random.randint(0, len(st.session_state.pages)-1)
        st.session_state.lastQuestion= 'no'
    else:
        st.session_state.lastQuestion= 'yes'


if 'index1' not in st.session_state:
    st.session_state.index1= 0    

if 'profileIndex' not in st.session_state:
    st.session_state.profileIndex= st.session_state.profileIndices[st.session_state.index1]   

header1, header2, header3 = st.columns([1,2,1])
characteristics1, characteristics2, characteristics3 = st.columns([1,2,1])
prediction1, prediction2, prediction3 =st.columns([1,2,1])
explanation1, explanation2, explanation3 = st.columns([1,5,1])
footer1, footer2, footer3 =st.columns([1,2,1])
evaluation1, evaluation2, evaluation3 = st.columns([1,2,1])




name= st.session_state.X_test_names.loc[st.session_state.profileIndex, "Name"]

@st.cache_resource
def trainModel(X_train,Y_train):
    model = xgb.XGBClassifier().fit(X_train, Y_train)
    return model


@st.cache_resource
def getSHAPvalues(_model,X_train, Y_train, X_test):
    # compute SHAP values
    explainer = shap.Explainer(_model, X_test)
    shap_values = explainer(X_test)
    return shap_values




def shapPlot(X_test, _shap_values):
    return shap.plots.waterfall(shap_values[st.session_state.profileIndex])

with header2:
    st.header('Explanation - SHAP Values')
    st.markdown('''  The SHAP value algorithm (SHapley Additive exPlanations) is a way to reverse-engineer the output of any predictive machine learning model.
    the technique helps to understand the decision took by a complex model. The classical models will typically answer the question 'how much' whereas the SHAP
    model will focus on the 'why'.

    Finally, the representation of the SHAP value will show how much each feature are contributing to the final prediction made by the model. For the Titanic dataset, each feature 
    will analyse each the contribution of each will be presented for different persons explaining the reason why this person survived the shipwreck or not. 
    ''')
    st.subheader(name, anchor='top')
    # st.write("For debugging:")
    # st.write(st.session_state.participantID)
    XGBmodel= trainModel(st.session_state.X_train, st.session_state.Y_train)
    
with characteristics2:
    # initialize list of lists
    data = st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)
    # Create the pandas DataFrame
    df = pd.DataFrame(data, columns=st.session_state.X_test.columns)
    st.dataframe(df)



with prediction2:
    # st.header("Prediction")
    prediction =  XGBmodel.predict(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
    probability = XGBmodel.predict_proba(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))

    if prediction == 0:
        prob = round((probability[0][0]*100),2)
        st.markdown("The model predicts with {}% probability  that {}  will :red[**not survive**]".format(prob, name) )

    else:
        prob = round((probability[0][1]*100),2)
        st.markdown("The model predicts with {}% probability  that {}  will :green[**survive**]".format(prob, name) )


with explanation2:
    st.subheader("Explanation")
    # with st.spinner("Please be patient, we are generating a new explanation"):
    shap_values= getSHAPvalues(XGBmodel, st.session_state.X_train, st.session_state.Y_train, st.session_state.X_test)
    st.set_option('deprecation.showPyplotGlobalUse', False)
    fig = shap.plots.waterfall(shap_values[st.session_state.profileIndex])
    st.pyplot(fig, bbox_inches='tight')
    data_indices = pd.concat([d.reset_index(drop=True) for d in [st.session_state.ports_df, st.session_state.title_df, st.session_state.gender_df]], axis=1)
    # st.dataframe(st.session_state.ports_df)
    # st.dataframe(st.session_state.title_df)
    # st.dataframe(st.session_state.gender_df)
    st.dataframe(data_indices)

with footer2:

    if (st.session_state.index1 < len(st.session_state.profileIndices)-1):
        if st.button("New profile"):
  
            st.session_state.index1 = st.session_state.index1+1
            st.session_state.profileIndex = st.session_state.profileIndices[st.session_state.index1]
            st.experimental_rerun()
    else:
        def is_user_active():
            if 'user_active1' in st.session_state.keys() and st.session_state['user_active1']:
                return True
            else:
                return False
        if is_user_active():
        # st.markdown("You have reached the end of the profiles")
        # if st.button("Continue to evaluation"):
        #     st.write(" ")
            with st.form("my_form1", clear_on_submit=True):
                st.subheader("Evaluation")
                st.write("These questions only ask for your opinion about this specific explanation")
                q1 = st.select_slider(
                '**1**- From the explanation, I **understand** how the algorithm works:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q2 = st.select_slider(
                '**2**- This explanation of how the algorithm works is **satisfying**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q3 = st.select_slider(
                '**3**- This explanation of how the algorithm works has **sufficient detail**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q4 = st.select_slider(
                '**4**- This explanation of how the algorithm works seems **complete**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q5 = st.select_slider(
                '**5**- This explanation of how the algorithm works **tells me how to use it**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q6 = st.select_slider(
                '**6**- This explanation of how the algorithm works is **useful to my goals**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q7 = st.select_slider(
                '**7**- This explanation of the algorithm shows me how **accurate** the algorithm is:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q8 = st.select_slider(
                '**8**- This explanation lets me judge when I should **trust and not trust** the algorithm:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                # Every form must have a submit button.
                submitted = st.form_submit_button("Submit")
                if submitted:
                    st.write("question 1", q1)
                    st.session_state.oocsi.send('EngD_HAII', {
                        'participant_ID': st.session_state.participantID,
                        'type of explanation': 'SHAP',
                        'q1': q1,
                        'q2': q2,
                        'q3': q3,
                        'q4': q4,
                        'q5': q5,
                        'q6': q6,
                        'q7': q7,
                        'q8': q8,
                        
                        })
                    if (st.session_state.lastQuestion =='yes'): 
                        switch_page('finalPage')
                    else: 
                        st.session_state.profileIndex =st.session_state.profileIndices[0]
                        switch_page(st.session_state.pages[st.session_state.nextPage1])
        else:
            if st.button('Continue to evaluation'):
                st.session_state['user_active1']=True
                st.experimental_rerun()