File size: 9,858 Bytes
b0ff21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import streamlit as st
import pandas as pd
import numpy as np
import copy
from oocsi_source import OOCSI
from uuid import uuid4
from streamlit_extras.switch_page_button import switch_page
import random
# import shap
import dice_ml
from dice_ml.utils import helpers
import xgboost as xgb
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier


# st.markdown("""<style> 
# .stSlider {
#     padding-bottom: 20px;    
#     }
#     </style> """, 
#     unsafe_allow_html=True)

# st.session_state.Y_train
# st.session_state.X_test
# st.session_state.X_test_names


#Delete this page from the array of pages to visit, this way it cannot be visited twice
if 'profile3' not in st.session_state:
    st.session_state.pages.remove("counterfactual")
    st.session_state.profile3= 'deleted'
    if (len(st.session_state.pages)>0):
        st.session_state.nextPage3 = random.randint(0, len(st.session_state.pages)-1)
        st.session_state.lastQuestion= 'no'
    else:
        st.session_state.lastQuestion= 'yes'


if 'index3' not in st.session_state:
    st.session_state.index3= 0    
    
 
if 'profileIndex' not in st.session_state:
    st.session_state.profileIndex= st.session_state.profileIndices[st.session_state.index3]      

header1, header2, header3 = st.columns([1,2,1])
characteristics1, characteristics2, characteristics3 = st.columns([1,2,1])
prediction1, prediction2, prediction3 =st.columns([1,2,1])
explanation1, explanation2, explanation3 = st.columns([1,10,1])
footer1, footer2, footer3 =st.columns([1,2,1])
evaluation1, evaluation2, evaluation3 = st.columns([1,2,1])



name= st.session_state.X_test_names.loc[st.session_state.profileIndex, "Name"]


@st.cache_resource
def trainModel(X_train,Y_train):
    model_1 = RandomForestClassifier().fit(X_train, Y_train)  ## Random forest because XGBoost doesn't work with counterfactuals
    return model_1


@st.cache_resource
def getcounterfactual_values(_model,X_prediction, X_train):
    # compute counterfactual values
    train_df = pd.read_csv('assets/train_df.csv')
    continous_col=["Age", 'Fare', 'Siblings_spouses', 'Title', 'Parents_children','relatives' ]
    # test_df_counter = X_test.copy()
    # test_df_counter['Survived'] = X_prediction
    dice_data = dice_ml.Data(dataframe=train_df,continuous_features=continous_col, outcome_name='Survived')
    dice_model= dice_ml.Model(model=_model, backend="sklearn")
    explainer = dice_ml.Dice(dice_data, dice_model, method="random")
    return explainer



def Counterfactualsplot(X_test, explainer):
    e1 = explainer.generate_counterfactuals(
        X_test[1:2],total_CFs=4, desired_class="opposite",
         features_to_vary = ['Age','Pclass', 'Sex','Siblings_spouses', 'Parents_children', 'Embarked', 'relatives',  'Title']  ) ## Deck, Fare 
    e1.cf_examples_list[0].final_cfs_df.to_csv(path_or_buf=rf'assets\counterfactuals_{name}.csv', index=False)
    counter_csv = pd.read_csv(f'assets\counterfactuals_{name}.csv')
    return st.dataframe(counter_csv, width=10000)

with header2:
    st.header("Explanation - Counterfactuals")
    st.markdown('''A counterfactual explanation describes a situation where if a specific event had not occurred, the conclusion would have been different
    and a specific outcome would not have occurred. In machine learning, counterfactuals are used to explain prediction of individuals instances. The prediction
    of the model will be analysed and certain conditions/features that created this prediction will be modified to obtain an different outcome for the model.''')

    st.markdown('''As displayed in the graph below, the relation betwwen the inputs andthe prediciton is modified by the feature values that creates a simple causal
    relationshhip betwen inputs and predictions. 
''') 

    st.image('assets/counterfactual.jpg', caption = 'Causal relation between inputs and predictions', use_column_width = 'always' )

    st.markdown('''A counterfactual explanation of a prediction will then describe the smallest amount of change that is necessary to make to change the output
    prediction to a predefine one.''')
    st.subheader(name, anchor='top')
    # st.write("For debugging:")
    # st.write(st.session_state.participantID)
    random_forest= trainModel(st.session_state.X_train, st.session_state.Y_train)
    
with characteristics2:
    # initialize list of lists
    data = st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)
    # Create the pandas DataFrame
    df = pd.DataFrame(data, columns=st.session_state.X_test.columns)
    st.dataframe(df)


with prediction2:
    # st.header("Prediction")
    prediction =  random_forest.predict(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
    prediction_all = random_forest.predict(st.session_state.X_test.values)
    probability = random_forest.predict_proba(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
    if prediction == 0:
        prob = round((probability[0][0]*100),2)
        st.markdown("The model predicts with {}% probability  that {}  will :red[**not survive**]".format(prob, name) )
    else:
        prob = round((probability[0][1]*100),2)
        st.markdown("The model predicts with {}% probability  that {}  will :green[**survive**]".format(prob, name) )

with explanation2:
    st.subheader("Explanation")
    st.markdown("counterfactual, more text here")

    

    # with st.spinner("Please be patient, we are generating a new explanation"):
    explainer= getcounterfactual_values(random_forest, prediction_all, st.session_state.X_test)
    st.set_option('deprecation.showPyplotGlobalUse', False)
    e1=Counterfactualsplot(st.session_state.X_test, explainer)
    data_indices = pd.concat([d.reset_index(drop=True) for d in [st.session_state.ports_df, st.session_state.title_df, st.session_state.gender_df]], axis=1)
    st.dataframe(data_indices)

with footer2:
    if (st.session_state.index3 < len(st.session_state.profileIndices)-1):
        if st.button("New profile"):
            st.session_state.index3 = st.session_state.index3+1
            st.session_state.profileIndex = st.session_state.profileIndices[st.session_state.index3]
            st.experimental_rerun()
    else:
        def is_user_active():
            if 'user_active3' in st.session_state.keys() and st.session_state['user_active3']:
                return True
            else:
                return False
        if is_user_active():
        # if st.button("Continue to evaluation"):
        #     st.write(" ")
            with st.form("my_form3", clear_on_submit=True):
                st.subheader("Evaluation")
                st.write("These questions only ask for your opinion about this specific explanation")
                q1 = st.select_slider(
                '**1**- From the explanation, I **understand** how the algorithm works:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q2 = st.select_slider(
                '**2**- This explanation of how the algorithm works is **satisfying**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q3 = st.select_slider(
                '**3**- This explanation of how the algorithm works has **sufficient detail**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q4 = st.select_slider(
                '**4**- This explanation of how the algorithm works seems **complete**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q5 = st.select_slider(
                '**5**- This explanation of how the algorithm works **tells me how to use it**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q6 = st.select_slider(
                '**6**- This explanation of how the algorithm works is **useful to my goals**:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q7 = st.select_slider(
                '**7**- This explanation of the algorithm shows me how **accurate** the algorithm is:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                q8 = st.select_slider(
                '**8**- This explanation lets me judge when I should **trust and not trust** the algorithm:',
                options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])

                # Every form must have a submit button.
                submitted = st.form_submit_button("Submit")
                if submitted:
                    # st.write("question 1", q1)
                    st.session_state.oocsi.send('EngD_HAII', {
                        'participant_ID': st.session_state.participantID,
                        'type of explanation': 'counterfactual',
                        'q1': q1,
                        'q2': q2,
                        'q3': q3,
                        'q4': q4,
                        'q5': q5,
                        'q6': q6,
                        'q7': q7,
                        'q8': q8,
                        
                        })
                    if (st.session_state.lastQuestion =='yes'): 
                        switch_page('finalPage')
                    else: 
                        st.session_state.profileIndex =st.session_state.profileIndices[0]
                        switch_page(st.session_state.pages[st.session_state.nextPage3])
        else:
            if st.button('Continue to evaluation'):
                st.session_state['user_active3']=True
                st.experimental_rerun()