import streamlit as st
import pandas as pd
import numpy as np
from oocsi_source import OOCSI
from uuid import uuid4
from streamlit_extras.switch_page_button import switch_page
import random
import dtreeviz
import xgboost as xgb
from dtreeviz.trees import dtreeviz
from sklearn.tree import DecisionTreeClassifier
import graphviz as graphviz
from sklearn.datasets import make_moons
import base64
# import os
# os.environ["PATH"] += os.pathsep + 'D:/Program Files (x86)/Graphviz2.38/bin/'
# st.markdown(""" """,
# unsafe_allow_html=True)
#Delete this page from the array of pages to visit, this way it cannot be visited twice
if 'profile2' not in st.session_state:
st.session_state.pages.remove("DecisionTree")
st.session_state.profile2= 'deleted'
if (len(st.session_state.pages)>0):
st.session_state.nextPage2 = random.randint(0, len(st.session_state.pages)-1)
st.session_state.lastQuestion= 'no'
else:
st.session_state.lastQuestion= 'yes'
if 'index2' not in st.session_state:
st.session_state.index2= 0
if 'profileIndex' not in st.session_state:
st.session_state.profileIndex= st.session_state.profileIndices[st.session_state.index2]
name= st.session_state.X_test_names.loc[st.session_state.profileIndex, "Name"]
header1, header2, header3 = st.columns([1,2,1])
characteristics1, characteristics2, characteristics3 = st.columns([1,2,1])
prediction1, prediction2, prediction3 =st.columns([1,2,1])
explanation1, explanation2, explanation3 = st.columns([1,2,1])
footer1, footer2, footer3 =st.columns([1,2,1])
evaluation1, evaluation2, evaluation3 = st.columns([1,2,1])
@st.cache_resource
def loadData():
train_df = pd.read_csv('assets/train_df.csv')
test_df = pd.read_csv('assets/test_df.csv')
X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1).copy()
return X_train, Y_train, X_test
@st.cache_resource
def trainModel(X_train,Y_train):
model = xgb.XGBClassifier().fit(X_train, Y_train)
return model
# @st.cache_resource
def createTree(_model, X_train, Y_train, X_test):
# X, y = make_moons(n_samples=20, noise=0.25, random_state=3)
# treeclf = DecisionTreeClassifier(random_state=0)
# treeclf.fit(X, y)
# viz_model= dtreeviz(treeclf, X, y, target_name="Classes",
# feature_names=["f0", "f1"], class_names=["c0", "c1"])
# clf = DecisionTreeClassifier(max_depth=3)
# clf.fit(X_train, Y_train)
# Y_pred = clf.predict(X_test)
# acc_decision_tree2 = round(clf.score(X_train, Y_train) * 100, 2)
# viz_model = dtreeviz(clf,
# X_train, Y_train,
# feature_names=X_train.columns,
# target_name='Survived',
# class_names=['Dead', 'Alive'],
# X=X_test.iloc[1]
# )
viz_model = dtreeviz(_model,
X_train, Y_train,
tree_index=0,
feature_names=list(X_train.columns),
target_name='Survived',
class_names=['Dead', 'Alive'],
X=X_test.iloc[st.session_state.profileIndex],
#depth_range_to_display=(0, 2),
show_just_path=True,
# orientation ='LR',
)
#path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg"
viz_model.save("/assets/images/prediction_path.svg")
return viz_model
def render_svg(svg):
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
html = r'
' % b64
st.write(html, unsafe_allow_html=True)
with header2: #header2
st.header("Explanation - Decision Tree")
st.markdown('''Decision Tree models are a non-parametric supervised learning method
commonly used for classification and regression.
They are constructed using two kinf of elements: Nodes and branches. At each node (intersection),
one of the data features is evaluated to split the observations into different paths.
At typical decision example is shown in the graph below.
''')
st.image('assets/Decision_tree.jpg',caption = 'Example of a decision tree')
st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data.
Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet.
Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made.
For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck.
''')
st.subheader(name)
XGBmodel= trainModel(st.session_state.X_train, st.session_state.Y_train)
# st.write("For debugging:")
# st.write(st.session_state.participantID)
with characteristics2:
# initialize list of lists
data = st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)
# Create the pandas DataFrame
df = pd.DataFrame(data, columns=st.session_state.X_test.columns)
st.dataframe(df)
with prediction2:
prediction = XGBmodel.predict(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
probability = XGBmodel.predict_proba(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1))
if prediction == 0:
prob = round((probability[0][0]*100),2)
st.markdown("The model predicts with {}% probability that {} will :red[**not survive**]".format(prob, name) )
else:
prob = round((probability[0][1]*100),2)
st.markdown("The model predicts with {}% probability that {} will :green[**survive**]".format(prob, name) )
with explanation2:
st.subheader("Visualization - Decision Tree")
# st.markdown('''Decision Tree model are a non-parametric supervised learning method
# commonly used for classification and regression.
# They are constructed using two kinf of elements: Nodes and branches. At each node (intersection),
# one of the data features is evaluated to split the observations into different paths.
# At typical decision example is shown in the graph below.
# ''')
# st.image('assets/Decision_tree.jpg')
# st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data.
# Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet.
# Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made.
# For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck.
# ''')
with st.spinner("Please be patient, we are generating a new explanation"):
viz_model = createTree(XGBmodel, st.session_state.X_train, st.session_state.Y_train, st.session_state.X_test)
# st.image("/assets/images/prediction_path.svg", width =200, use_column_width=True)
#viz_model.view()
# read in svg prediction path and display
path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg"
# st.success("Done!")
with open("/assets/images/prediction_path.svg", "r") as f:
svg = f.read()
render_svg(svg)
st.text("")
with footer2:
if (st.session_state.index2 < len(st.session_state.profileIndices)-1):
if st.button("New profile"):
st.session_state.index2 = st.session_state.index2+1
st.session_state.profileIndex = st.session_state.profileIndices[st.session_state.index2]
st.experimental_rerun()
else:
def is_user_active():
if 'user_active2' in st.session_state.keys() and st.session_state['user_active2']:
return True
else:
return False
if is_user_active():
# if st.button("Continue to evaluation"):
# st.write(" ")
with st.form("my_form2", clear_on_submit=True):
st.subheader("Evaluation")
st.write("These questions only ask for your opinion about this specific explanation")
q1 = st.select_slider(
'**1**- From the explanation, I **understand** how the algorithm works:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q2 = st.select_slider(
'**2**- This explanation of how the algorithm works is **satisfying**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q3 = st.select_slider(
'**3**- This explanation of how the algorithm works has **sufficient detail**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q4 = st.select_slider(
'**4**- This explanation of how the algorithm works seems **complete**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q5 = st.select_slider(
'**5**- This explanation of how the algorithm works **tells me how to use it**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q6 = st.select_slider(
'**6**- This explanation of how the algorithm works is **useful to my goals**:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q7 = st.select_slider(
'**7**- This explanation of the algorithm shows me how **accurate** the algorithm is:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
q8 = st.select_slider(
'**8**- This explanation lets me judge when I should **trust and not trust** the algorithm:',
options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree'])
# Every form must have a submit button.
submitted = st.form_submit_button("Submit")
if submitted:
# st.write("question 1", q1)
st.session_state.oocsi.send('EngD_HAII', {
'participant_ID': st.session_state.participantID,
'type of explanation': 'Decision tree',
'q1': q1,
'q2': q2,
'q3': q3,
'q4': q4,
'q5': q5,
'q6': q6,
'q7': q7,
'q8': q8,
})
if (st.session_state.lastQuestion =='yes'):
switch_page('finalPage')
else:
st.session_state.profileIndex =st.session_state.profileIndices[0]
switch_page(st.session_state.pages[st.session_state.nextPage2])
else:
if st.button('Continue to evaluation'):
st.session_state['user_active2']=True
st.experimental_rerun()