import streamlit as st import pandas as pd import numpy as np from oocsi_source import OOCSI from uuid import uuid4 from streamlit_extras.switch_page_button import switch_page import random import dtreeviz import xgboost as xgb from dtreeviz.trees import dtreeviz from sklearn.tree import DecisionTreeClassifier import graphviz as graphviz from sklearn.datasets import make_moons import base64 # import os # os.environ["PATH"] += os.pathsep + 'D:/Program Files (x86)/Graphviz2.38/bin/' # st.markdown(""" """, # unsafe_allow_html=True) #Delete this page from the array of pages to visit, this way it cannot be visited twice if 'profile2' not in st.session_state: st.session_state.pages.remove("DecisionTree") st.session_state.profile2= 'deleted' if (len(st.session_state.pages)>0): st.session_state.nextPage2 = random.randint(0, len(st.session_state.pages)-1) st.session_state.lastQuestion= 'no' else: st.session_state.lastQuestion= 'yes' if 'index2' not in st.session_state: st.session_state.index2= 0 if 'profileIndex' not in st.session_state: st.session_state.profileIndex= st.session_state.profileIndices[st.session_state.index2] name= st.session_state.X_test_names.loc[st.session_state.profileIndex, "Name"] header1, header2, header3 = st.columns([1,2,1]) characteristics1, characteristics2, characteristics3 = st.columns([1,2,1]) prediction1, prediction2, prediction3 =st.columns([1,2,1]) explanation1, explanation2, explanation3 = st.columns([1,2,1]) footer1, footer2, footer3 =st.columns([1,2,1]) evaluation1, evaluation2, evaluation3 = st.columns([1,2,1]) @st.cache_resource def loadData(): train_df = pd.read_csv('assets/train_df.csv') test_df = pd.read_csv('assets/test_df.csv') X_train = train_df.drop("Survived", axis=1) Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() return X_train, Y_train, X_test @st.cache_resource def trainModel(X_train,Y_train): model = xgb.XGBClassifier().fit(X_train, Y_train) return model # @st.cache_resource def createTree(_model, X_train, Y_train, X_test): # X, y = make_moons(n_samples=20, noise=0.25, random_state=3) # treeclf = DecisionTreeClassifier(random_state=0) # treeclf.fit(X, y) # viz_model= dtreeviz(treeclf, X, y, target_name="Classes", # feature_names=["f0", "f1"], class_names=["c0", "c1"]) # clf = DecisionTreeClassifier(max_depth=3) # clf.fit(X_train, Y_train) # Y_pred = clf.predict(X_test) # acc_decision_tree2 = round(clf.score(X_train, Y_train) * 100, 2) # viz_model = dtreeviz(clf, # X_train, Y_train, # feature_names=X_train.columns, # target_name='Survived', # class_names=['Dead', 'Alive'], # X=X_test.iloc[1] # ) viz_model = dtreeviz(_model, X_train, Y_train, tree_index=0, feature_names=list(X_train.columns), target_name='Survived', class_names=['Dead', 'Alive'], X=X_test.iloc[st.session_state.profileIndex], #depth_range_to_display=(0, 2), show_just_path=True, # orientation ='LR', ) #path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg" viz_model.save("/assets/images/prediction_path.svg") return viz_model def render_svg(svg): """Renders the given svg string.""" b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8") html = r'' % b64 st.write(html, unsafe_allow_html=True) with header2: #header2 st.header("Explanation - Decision Tree") st.markdown('''Decision Tree models are a non-parametric supervised learning method commonly used for classification and regression. They are constructed using two kinf of elements: Nodes and branches. At each node (intersection), one of the data features is evaluated to split the observations into different paths. At typical decision example is shown in the graph below. ''') st.image('assets/Decision_tree.jpg',caption = 'Example of a decision tree') st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data. Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet. Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made. For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck. ''') st.subheader(name) XGBmodel= trainModel(st.session_state.X_train, st.session_state.Y_train) # st.write("For debugging:") # st.write(st.session_state.participantID) with characteristics2: # initialize list of lists data = st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1) # Create the pandas DataFrame df = pd.DataFrame(data, columns=st.session_state.X_test.columns) st.dataframe(df) with prediction2: prediction = XGBmodel.predict(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)) probability = XGBmodel.predict_proba(st.session_state.X_test.iloc[st.session_state.profileIndex].values.reshape(1, -1)) if prediction == 0: prob = round((probability[0][0]*100),2) st.markdown("The model predicts with {}% probability that {} will :red[**not survive**]".format(prob, name) ) else: prob = round((probability[0][1]*100),2) st.markdown("The model predicts with {}% probability that {} will :green[**survive**]".format(prob, name) ) with explanation2: st.subheader("Visualization - Decision Tree") # st.markdown('''Decision Tree model are a non-parametric supervised learning method # commonly used for classification and regression. # They are constructed using two kinf of elements: Nodes and branches. At each node (intersection), # one of the data features is evaluated to split the observations into different paths. # At typical decision example is shown in the graph below. # ''') # st.image('assets/Decision_tree.jpg') # st.markdown(''' The Root Node starts the graph. It is usually the variable that splits the more lcearly the data. # Then, intermediate nodes are vsisble were different varaibales are evaluated but no final prediction is made yet. # Finally, leaf nodes are present where the predicrtions (numerical of categoriacl) are made. # For the Titanic dataset, the prediction will be whether the studied person survived the shipwreck. # ''') with st.spinner("Please be patient, we are generating a new explanation"): viz_model = createTree(XGBmodel, st.session_state.X_train, st.session_state.Y_train, st.session_state.X_test) # st.image("/assets/images/prediction_path.svg", width =200, use_column_width=True) #viz_model.view() # read in svg prediction path and display path = "/assets/images/prediction_path" + str(st.session_state.profileIndex) +".svg" # st.success("Done!") with open("/assets/images/prediction_path.svg", "r") as f: svg = f.read() render_svg(svg) st.text("") with footer2: if (st.session_state.index2 < len(st.session_state.profileIndices)-1): if st.button("New profile"): st.session_state.index2 = st.session_state.index2+1 st.session_state.profileIndex = st.session_state.profileIndices[st.session_state.index2] st.experimental_rerun() else: def is_user_active(): if 'user_active2' in st.session_state.keys() and st.session_state['user_active2']: return True else: return False if is_user_active(): # if st.button("Continue to evaluation"): # st.write(" ") with st.form("my_form2", clear_on_submit=True): st.subheader("Evaluation") st.write("These questions only ask for your opinion about this specific explanation") q1 = st.select_slider( '**1**- From the explanation, I **understand** how the algorithm works:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q2 = st.select_slider( '**2**- This explanation of how the algorithm works is **satisfying**:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q3 = st.select_slider( '**3**- This explanation of how the algorithm works has **sufficient detail**:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q4 = st.select_slider( '**4**- This explanation of how the algorithm works seems **complete**:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q5 = st.select_slider( '**5**- This explanation of how the algorithm works **tells me how to use it**:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q6 = st.select_slider( '**6**- This explanation of how the algorithm works is **useful to my goals**:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q7 = st.select_slider( '**7**- This explanation of the algorithm shows me how **accurate** the algorithm is:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) q8 = st.select_slider( '**8**- This explanation lets me judge when I should **trust and not trust** the algorithm:', options=['totally disagree', 'disagree', 'neutral' , 'agree', 'totally agree']) # Every form must have a submit button. submitted = st.form_submit_button("Submit") if submitted: # st.write("question 1", q1) st.session_state.oocsi.send('EngD_HAII', { 'participant_ID': st.session_state.participantID, 'type of explanation': 'Decision tree', 'q1': q1, 'q2': q2, 'q3': q3, 'q4': q4, 'q5': q5, 'q6': q6, 'q7': q7, 'q8': q8, }) if (st.session_state.lastQuestion =='yes'): switch_page('finalPage') else: st.session_state.profileIndex =st.session_state.profileIndices[0] switch_page(st.session_state.pages[st.session_state.nextPage2]) else: if st.button('Continue to evaluation'): st.session_state['user_active2']=True st.experimental_rerun()