Spaces:
Runtime error
Runtime error
File size: 8,136 Bytes
ec0fdfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
#!/usr/bin/python
#****************************************************************#
# ScriptName: analysis_data.py
# Author: Anonymous_123
# Create Date: 2022-07-25 19:54
# Modify Author: Anonymous_123
# Modify Date: 2022-09-25 12:04
# Function:
#***************************************************************#
import os
import sys
import numpy as np
import cv2
import torch
from tqdm import tqdm
import shutil
import pdb
import argparse
parser = argparse.ArgumentParser(description='resize object')
parser.add_argument('--scale', type=float, default=None, help='object scale')
parser.add_argument('--img_path', type=str, help='image path')
parser.add_argument('--mask_path', type=str, help='mask path')
def get_bbox_and_rate(mask):
gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
if len(contours) == 0:
return None, None
max_area = 0
max_idx = 0
for i, cnt in enumerate(contours):
x,y,w,h = cv2.boundingRect(cnt)
if w*h > max_area:
max_idx = i
max_area = w*h
# 外接矩形
x,y,w,h = cv2.boundingRect(contours[max_idx])
mask_new = np.zeros(mask.shape, dtype='uint8')
mask_new[y:y+h, x:x+w, :] = mask[y:y+h, x:x+w, :]
rate = (mask_new[:,:,0]>127.5).sum()/mask.shape[0]/mask.shape[1]
return (x,y,w,h), rate
def resize_around_the_center(img, mask, bbox, operation, scale_step=1.2):
x,y,w,h = bbox
H,W,C = mask.shape
obj_mask = mask[y:y+h, x:x+w, :].copy()
# obj_mask = cv2.resize(obj_mask, (int(w*scale_step),int(h*scale_step)) if operation == 'upsample' else (int(w/scale_step), int(h/scale_step)))
obj_mask = cv2.resize(obj_mask, (int(w*scale_step),int(h*scale_step)))
start_point_x = max(x+w//2 - obj_mask.shape[1]//2, 0) # center - w
start_point_y = max(y+h//2 - obj_mask.shape[0]//2, 0) # center - h
end_point_x = min(x+w//2 + obj_mask.shape[1]//2, W) # center+w
end_point_y = min(y+h//2 + obj_mask.shape[0]//2, H) # center+h
start_point_x_obj = max(0,obj_mask.shape[1]//2-(x+w//2))
start_point_y_obj = max(0, obj_mask.shape[0]//2-(y+h//2))
mask[:] = 0
mask[start_point_y:end_point_y, start_point_x:end_point_x] = obj_mask[start_point_y_obj:start_point_y_obj+(end_point_y-start_point_y), start_point_x_obj:start_point_x_obj+(end_point_x-start_point_x)]
obj_img = img[y:y+h, x:x+w, :].copy()
# obj_img = cv2.resize(obj_img, (int(w*scale_step),int(h*scale_step)) if operation == 'upsample' else (int(w/scale_step), int(h/scale_step)))
obj_img = cv2.resize(obj_img, (int(w*scale_step),int(h*scale_step)))
img = cv2.GaussianBlur(img, (49, 49), 0)
img[start_point_y:end_point_y, start_point_x:end_point_x] = obj_img[start_point_y_obj:start_point_y_obj+(end_point_y-start_point_y), start_point_x_obj:start_point_x_obj+(end_point_x-start_point_x)]
return img, mask
def resize_around_the_center_padding(img, mask, bbox, scale_step=1.2):
x,y,w,h = bbox
H,W,C = mask.shape
mask_new = np.zeros((int(H/scale_step), int(W/scale_step), 3), dtype='uint8')
mask_new_full = np.zeros((int(H/scale_step), int(W/scale_step), 3), dtype='uint8')
# img_new = np.zeros((int(H/scale_step), int(W/scale_step), 3), dtype='uint8')
img_new = cv2.resize(img, (int(W/scale_step), int(H/scale_step)))
if scale_step < 1:
mask_new[int((y+h/2)*(1/scale_step-1)):int((y+h/2)*(1/scale_step-1)+H), int((x+w/2)*(1/scale_step-1)):int((x+w/2)*(1/scale_step-1)+W)] = mask
mask_new_full[int((y+h/2)*(1/scale_step-1)):int((y+h/2)*(1/scale_step-1)+H), int((x+w/2)*(1/scale_step-1)):int((x+w/2)*(1/scale_step-1)+W)] = mask.max()*np.ones(mask.shape, dtype='uint8')
img_new[int((y+h/2)*(1/scale_step-1)):int((y+h/2)*(1/scale_step-1)+H), int((x+w/2)*(1/scale_step-1)):int((x+w/2)*(1/scale_step-1)+W)] = img
else:
mask_new = mask[int((y+h/2)*(1-1/scale_step)):int((y+h/2)*(1-1/scale_step))+int(H/scale_step), int((x+w/2)*(1-1/scale_step)):int((x+w/2)*(1-1/scale_step))+int(W/scale_step)]
mask_new_full = mask[int((y+h/2)*(1-1/scale_step)):int((y+h/2)*(1-1/scale_step))+int(H/scale_step), int((x+w/2)*(1-1/scale_step)):int((x+w/2)*(1-1/scale_step))+int(W/scale_step)]
img_new = img[int((y+h/2)*(1-1/scale_step)):int((y+h/2)*(1-1/scale_step))+int(H/scale_step), int((x+w/2)*(1-1/scale_step)):int((x+w/2)*(1-1/scale_step))+int(W/scale_step)]
img_new = cv2.resize(img_new, (W,H))
mask_new = cv2.resize(mask_new, (W,H))
mask_new_full = cv2.resize(mask_new_full, (W,H))
return img_new, mask_new, mask_new_full
def rescale(img, mask, scale=None, max_steps=50):
bbox, rate = get_bbox_and_rate(mask)
if bbox is None:
return None, None, None
num_steps = 0
mask_full = mask.copy()
while np.floor(rate*100) != scale*100. and abs(rate-scale) > 0.015:
# while not (abs(bbox[0]-0)<10 or abs(bbox[1]-0)<10 or abs(bbox[0]+bbox[2]-img.shape[1])<10 or abs(bbox[1]+bbox[3]-img.shape[0])<10):
operation = 'upsample' if np.floor(rate*100) < scale*100. else 'downsample'
scale_step = np.sqrt(scale/rate)
# img, mask = resize_around_the_center(img, mask, bbox, operation, scale_step=scale_step)
img, mask, mask_full = resize_around_the_center_padding(img, mask, bbox, scale_step=scale_step)
bbox, rate_ = get_bbox_and_rate(mask)
if (operation == 'upsample' and rate_ < rate) or (operation == 'downsample' and rate_ > rate):
return None, None, None
num_steps += 1
rate = rate_
print(rate)
if num_steps > max_steps:
return None, None, None
return img, mask_full, mask
def rescale_maximum(img, mask, scale=None, max_steps=50):
bbox, rate = get_bbox_and_rate(mask)
if bbox is None:
return None, None, None
x,y,w,h = bbox
H,W,C = img.shape
if H/h < W/w:
y_start, y_end = y, y+h
new_w = w/H*h
c_x = x + w//2
c_x_new = new_w*c_x/W
x_start = c_x - c_x_new
x_end = x_start + new_w
else:
x_start, x_end = x, x+w
new_h = h/W*w
c_y = y+h//2
c_y_new = new_h*c_y/H
y_start = c_y - c_y_new
y_end = y_start + new_h
img_new = img[min(y, int(y_start)):max(int(y_end), y+h), min(x, int(x_start)):max(int(x_end),x+w), :]
mask_new = mask[min(y, int(y_start)):max(int(y_end),y+h),min(x, int(x_start)):max(int(x_end),x+w),:]
img_new = cv2.resize(img_new, (W,H))
mask_new = cv2.resize(mask_new, (W,H))
return img_new, mask_new, mask_new
if __name__ == '__main__':
args = parser.parse_args()
scale = args.scale
img_path_save = 'results/img_rescaled.png'
mask_path_save = 'results/mask_rescaled.png'
if scale == None:
shutil.copy(args.img_path, img_path_save)
shutil.copy(args.mask_path, mask_path_save)
else:
try:
finals = []
img = cv2.imread(args.img_path)
mask = cv2.imread(args.mask_path)
img_rescale, mask_rescale, mask_obj = rescale_maximum(img.copy(), mask.copy(), scale=scale)
bbox, max_rate = get_bbox_and_rate(mask_obj)
if scale < max_rate:
img_rescale, mask_rescale, mask_obj = rescale(img.copy(), mask.copy(), scale=scale)
if img_rescale is None:
print('Invalid size')
shutil.copy(args.img_path, img_path_save)
shutil.copy(args.mask_path, mask_path_save)
sys.exit()
final = [img, img_rescale, mask, mask_rescale, mask_obj]
# cv2.imwrite('tmp.png', cv2.hconcat(final))
cv2.imwrite(img_path_save, img_rescale)
cv2.imwrite(mask_path_save, mask_obj)
# cv2.imwrite(mask_path_save_full, mask_rescale)
except:
print('Invalid size, using the original one')
shutil.copy(args.img_path, img_path_save)
shutil.copy(args.mask_path, mask_path_save)
|