Spaces:
Runtime error
Runtime error
File size: 4,287 Bytes
ec0fdfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
#!/usr/bin/python
#****************************************************************#
# ScriptName: change_place.py
# Author: Anonymous_123
# Create Date: 2022-08-26 14:13
# Modify Author: Anonymous_123
# Modify Date: 2022-08-26 14:13
# Function:
#***************************************************************#
import os
import torch
import torch.nn as nn
from torchvision.transforms import functional as TF
import cv2
from PIL import Image
import numpy as np
import random
# random.seed(0)
import pdb
import imutils
from tqdm import tqdm
def change_place(img, mask, bbox, invert_mask):
'''
img: N,C,H,W
'''
if invert_mask:
mask = 1-mask
device = img.device
x,y,new_x,new_y,w,h = bbox
img_ori = img.clone()
mask_ori = mask.clone()
img_ori = img_ori.to(device)
mask_ori = mask_ori.to(device)
img[:,:, new_y:new_y+h, new_x:new_x+w] = img_ori[:,:, y:y+h, x:x+w]
mask_new = torch.zeros(mask.shape).to(device)
mask_new[:,:, new_y:new_y+h, new_x:new_x+w] = mask_ori[:,:, y:y+h, x:x+w]
mask_ = mask_new > 0.5
img = img*mask_ + (~mask_)*img_ori
if invert_mask:
mask_new = 1 - mask_new
return img, mask_new
def find_bbox(mask):
mask_copy = mask.copy()
contours, _ = cv2.findContours(mask[:,:,0],cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
bbox = []
max_area = 0
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(mask_copy, (x, y), (x + w, y + h), (0, 255, 0), 2)
if max_area < w*h:
max_area = w*h
bbox = [x,y,w,h]
if bbox == []:
return None
else:
H,W,C = mask.shape
x,y,w,h = bbox
new_x = random.randint(0, W-w)
new_y = random.randint(0, H-h)
return [x, y, new_x, new_y, w,h]
if __name__ == '__main__':
mask_path = 'n01440764/ILSVRC2012_val_00000293.png'
ori_img_path_root = 'ImageNet-S/ImageNetS919/validation/'
outpainting_root = 'TFill/results/imagenet_2/test_latest/img_ref_out/'
padding_root = 'ImageNet-S/ImageNetS919/validation-size-0.05-padding-4901/'
mask_root = 'ImageNet-S/ImageNetS919/validation-segmentation-label-mask/'
imgs = os.listdir(outpainting_root)
shape = (256,256)
for cls in tqdm(os.listdir(mask_root)):
for img_name in os.listdir(os.path.join(mask_root, cls)):
if not img_name.split('.')[0]+'_0.png' in imgs:
continue
img_path = os.path.join(ori_img_path_root, cls, img_name.split('.')[0]+'.JPEG')
img_path_init = os.path.join(outpainting_root, img_name.split('.')[0]+'_0.png')
img_path_2 = os.path.join(padding_root, cls, img_name.split('.')[0]+'.JPEG')
mask_path = os.path.join(mask_root, cls, img_name)
if os.path.exists(img_path) and os.path.exists(img_path_init) and os.path.exists(img_path_2) and os.path.exists(mask_path):
img = Image.open(img_path_2).convert('RGB')
img = img.resize(shape, Image.LANCZOS)
img = TF.to_tensor(img).unsqueeze(0).mul(2).sub(1)
mask = Image.open(mask_path).convert('RGB')
mask = mask.resize(shape, Image.NEAREST)
bbox = find_bbox(np.array(mask))
mask = ((np.array(mask) > 0.5) * 255).astype(np.uint8)
mask = TF.to_tensor(Image.fromarray(mask))
mask = mask[0, ...].unsqueeze(0).unsqueeze(0)
if bbox is not None:
img, mask = change_place(img, mask, bbox)
img_init = Image.open(img_path_init).convert('RGB')
img_init = img_init.resize(shape, Image.LANCZOS)
img_init = TF.to_tensor(img_init).unsqueeze(0).mul(2).sub(1)
img_new = img_init*(1-mask) + img*mask
img_new = np.transpose(((img_new+1)/2*255)[0].numpy(), (1,2,0))[:,:,::-1]
img_init = cv2.imread(img_path)
img_init = cv2.resize(img_init, shape)
# cv2.imwrite('tmp/'+img_name, cv2.hconcat([img_init, img_new.astype('uint8')]))
cv2.imwrite('tmp/'+img_name, img_new.astype('uint8'))
|