File size: 25,151 Bytes
ec0fdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
import math
from einops import rearrange
from .transformer_ops.transformer_function import TransformerEncoderLayer


######################################################################################
# Attention-Aware Layer
######################################################################################
class AttnAware(nn.Module):
    def __init__(self, input_nc, activation='gelu', norm='pixel', num_heads=2):
        super(AttnAware, self).__init__()

        activation_layer = get_nonlinearity_layer(activation)
        norm_layer = get_norm_layer(norm)
        head_dim = input_nc // num_heads
        self.num_heads = num_heads
        self.input_nc = input_nc
        self.scale = head_dim ** -0.5

        self.query_conv = nn.Sequential(
            norm_layer(input_nc),
            activation_layer,
            nn.Conv2d(input_nc, input_nc, kernel_size=1)
        )
        self.key_conv = nn.Sequential(
            norm_layer(input_nc),
            activation_layer,
            nn.Conv2d(input_nc, input_nc, kernel_size=1)
        )

        self.weight = nn.Conv2d(self.num_heads*2, 2, kernel_size=1, stride=1)
        self.to_out = ResnetBlock(input_nc * 2, input_nc, 1, 0, activation, norm)

    def forward(self, x, pre=None, mask=None):
        B, C, W, H = x.size()
        q = self.query_conv(x).view(B, -1, W*H)
        k = self.key_conv(x).view(B, -1, W*H)
        v = x.view(B, -1, W*H)

        q = rearrange(q, 'b (h d) n -> b h n d', h=self.num_heads)
        k = rearrange(k, 'b (h d) n -> b h n d', h=self.num_heads)
        v = rearrange(v, 'b (h d) n -> b h n d', h=self.num_heads)
        dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale

        if pre is not None:
            # attention-aware weight
            B, head, N, N = dots.size()
            mask_n = mask.view(B, -1, 1, W * H).expand_as(dots)
            w_visible = (dots.detach() * mask_n).max(dim=-1, keepdim=True)[0]
            w_invisible = (dots.detach() * (1-mask_n)).max(dim=-1, keepdim=True)[0]
            weight = torch.cat([w_visible.view(B, head, W, H), w_invisible.view(B, head, W, H)], dim=1)
            weight = self.weight(weight)
            weight = F.softmax(weight, dim=1)
            # visible attention score
            pre_v = pre.view(B, -1, W*H)
            pre_v = rearrange(pre_v, 'b (h d) n -> b h n d', h=self.num_heads)
            dots_visible = torch.where(dots > 0, dots * mask_n, dots / (mask_n + 1e-8))
            attn_visible = dots_visible.softmax(dim=-1)
            context_flow = torch.einsum('bhij, bhjd->bhid', attn_visible, pre_v)
            context_flow = rearrange(context_flow, 'b h n d -> b (h d) n').view(B, -1, W, H)
            # invisible attention score
            dots_invisible = torch.where(dots > 0, dots * (1 - mask_n), dots / ((1 - mask_n) + 1e-8))
            attn_invisible = dots_invisible.softmax(dim=-1)
            self_attention = torch.einsum('bhij, bhjd->bhid', attn_invisible, v)
            self_attention = rearrange(self_attention, 'b h n d -> b (h d) n').view(B, -1, W, H)
            # out
            out = weight[:, :1, :, :]*context_flow + weight[:, 1:, :, :]*self_attention
        else:
            attn = dots.softmax(dim=-1)
            out = torch.einsum('bhij, bhjd->bhid', attn, v)

            out = rearrange(out, 'b h n d -> b (h d) n').view(B, -1, W, H)

        out = self.to_out(torch.cat([out, x], dim=1))
        return out


######################################################################################
# base modules
######################################################################################
class NoiseInjection(nn.Module):
    def __init__(self):
        super(NoiseInjection, self).__init__()

        self.alpha = nn.Parameter(torch.zeros(1))

    def forward(self, x, noise=None, mask=None):
        if noise is None:
            b, _, h, w = x.size()
            noise = x.new_empty(b, 1, h, w).normal_()
        if mask is not None:
            mask = F.interpolate(mask, size=x.size()[2:], mode='bilinear', align_corners=True)
            return x + self.alpha * noise * (1 - mask)    # add noise only to the invisible part
        return x + self.alpha * noise


class ConstantInput(nn.Module):
    """
    add position embedding for each learned VQ word
    """
    def __init__(self, channel, size=16):
        super().__init__()

        self.input = nn.Parameter(torch.randn(1, channel, size, size))

    def forward(self, input):
        batch = input.shape[0]
        out = self.input.repeat(batch, 1, 1, 1)

        return out


class UpSample(nn.Module):
    """ sample with convolutional operation
    :param input_nc: input channel
    :param with_conv: use convolution to refine the feature
    :param kernel_size: feature size
    :param return_mask: return mask for the confidential score
    """
    def __init__(self, input_nc, with_conv=False, kernel_size=3, return_mask=False):
        super(UpSample, self).__init__()
        self.with_conv = with_conv
        self.return_mask = return_mask
        if self.with_conv:
            self.conv = PartialConv2d(input_nc, input_nc, kernel_size=kernel_size, stride=1,
                                      padding=int(int(kernel_size-1)/2), return_mask=True)

    def forward(self, x, mask=None):
        x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
        mask = F.interpolate(mask, scale_factor=2, mode='bilinear', align_corners=True) if mask is not None else mask
        if self.with_conv:
            x, mask = self.conv(x, mask)
        if self.return_mask:
            return x, mask
        else:
            return x


class DownSample(nn.Module):
    """ sample with convolutional operation
        :param input_nc: input channel
        :param with_conv: use convolution to refine the feature
        :param kernel_size: feature size
        :param return_mask: return mask for the confidential score
    """
    def __init__(self, input_nc, with_conv=False, kernel_size=3, return_mask=False):
        super(DownSample, self).__init__()
        self.with_conv = with_conv
        self.return_mask = return_mask
        if self.with_conv:
            self.conv = PartialConv2d(input_nc, input_nc, kernel_size=kernel_size, stride=2,
                                      padding=int(int(kernel_size-1)/2), return_mask=True)

    def forward(self, x, mask=None):
        if self.with_conv:
            x, mask = self.conv(x, mask)
        else:
            x = F.avg_pool2d(x, kernel_size=2, stride=2)
            mask = F.avg_pool2d(mask, kernel_size=2, stride=2) if mask is not None else mask
        if self.return_mask:
            return x, mask
        else:
            return x


class ResnetBlock(nn.Module):
    def __init__(self, input_nc, output_nc=None, kernel=3, dropout=0.0, activation='gelu', norm='pixel', return_mask=False):
        super(ResnetBlock, self).__init__()

        activation_layer = get_nonlinearity_layer(activation)
        norm_layer = get_norm_layer(norm)
        self.return_mask = return_mask

        output_nc = input_nc if output_nc is None else output_nc

        self.norm1 = norm_layer(input_nc)
        self.conv1 = PartialConv2d(input_nc, output_nc, kernel_size=kernel, padding=int((kernel-1)/2), return_mask=True)
        self.norm2 = norm_layer(output_nc)
        self.conv2 = PartialConv2d(output_nc, output_nc, kernel_size=kernel, padding=int((kernel-1)/2), return_mask=True)
        self.dropout = nn.Dropout(dropout)
        self.act = activation_layer

        if input_nc != output_nc:
            self.short = PartialConv2d(input_nc, output_nc, kernel_size=1, stride=1, padding=0)
        else:
            self.short = Identity()

    def forward(self, x, mask=None):
        x_short = self.short(x)
        x, mask = self.conv1(self.act(self.norm1(x)), mask)
        x, mask = self.conv2(self.dropout(self.act(self.norm2(x))), mask)
        if self.return_mask:
            return (x + x_short) / math.sqrt(2), mask
        else:
            return (x + x_short) / math.sqrt(2)


class DiffEncoder(nn.Module):
    def __init__(self, input_nc, ngf=64, kernel_size=2, embed_dim=512, down_scale=4, num_res_blocks=2, dropout=0.0,
                 rample_with_conv=True, activation='gelu', norm='pixel', use_attn=False):
        super(DiffEncoder, self).__init__()

        activation_layer = get_nonlinearity_layer(activation)
        norm_layer = get_norm_layer(norm)

        # start
        self.encode = PartialConv2d(input_nc, ngf, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)/2), return_mask=True)
        # down
        self.use_attn = use_attn
        self.down_scale = down_scale
        self.num_res_blocks = num_res_blocks
        self.down = nn.ModuleList()
        out_dim = ngf
        for i in range(down_scale):
            block = nn.ModuleList()
            down = nn.Module()
            in_dim = out_dim
            out_dim = int(in_dim * 2)
            down.downsample = DownSample(in_dim, rample_with_conv, kernel_size=2, return_mask=True)
            for i_block in range(num_res_blocks):
                block.append(ResnetBlock(in_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True))
                in_dim = out_dim
            down.block = block
            self.down.append(down)
        # middle
        self.mid = nn.Module()
        self.mid.block1 = ResnetBlock(out_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True)
        if self.use_attn:
            self.mid.attn = TransformerEncoderLayer(out_dim, kernel=1)
        self.mid.block2 = ResnetBlock(out_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True)
        # end
        self.conv_out = ResnetBlock(out_dim, embed_dim, kernel_size, dropout, activation, norm, return_mask=True)

    def forward(self, x, mask=None, return_mask=False):
        x, mask = self.encode(x, mask)
        # down sampling
        for i in range(self.down_scale):
            x, mask = self.down[i].downsample(x, mask)
            for i_block in range(self.num_res_blocks):
                x, mask = self.down[i].block[i_block](x, mask)
        # middle
        x, mask = self.mid.block1(x, mask)
        if self.use_attn:
            x = self.mid.attn(x)
        x, mask = self.mid.block2(x, mask)
        # end
        x, mask = self.conv_out(x, mask)
        if return_mask:
            return x, mask
        return x


class DiffDecoder(nn.Module):
    def __init__(self, output_nc, ngf=64, kernel_size=3, embed_dim=512, up_scale=4, num_res_blocks=2, dropout=0.0, word_size=16,
                 rample_with_conv=True, activation='gelu', norm='pixel', add_noise=False, use_attn=True, use_pos=True):
        super(DiffDecoder, self).__init__()

        activation_layer = get_nonlinearity_layer(activation)
        norm_layer = get_norm_layer(norm)
        self.up_scale = up_scale
        self.num_res_blocks = num_res_blocks
        self.add_noise = add_noise
        self.use_attn = use_attn
        self.use_pos = use_pos
        in_dim = ngf * (2 ** self.up_scale)

        # start
        if use_pos:
            self.pos_embed = ConstantInput(embed_dim, size=word_size)
        self.conv_in = PartialConv2d(embed_dim, in_dim, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)/2))
        # middle
        self.mid = nn.Module()
        self.mid.block1 = ResnetBlock(in_dim, in_dim, kernel_size, dropout, activation, norm)
        if self.use_attn:
            self.mid.attn = TransformerEncoderLayer(in_dim, kernel=1)
        self.mid.block2 = ResnetBlock(in_dim, in_dim, kernel_size, dropout, activation, norm)
        # up
        self.up = nn.ModuleList()
        out_dim = in_dim
        for i in range(up_scale):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            noise = nn.ModuleList()
            up = nn.Module()
            in_dim = out_dim
            out_dim = int(in_dim / 2)
            for i_block in range(num_res_blocks):
                if add_noise:
                    noise.append(NoiseInjection())
                block.append(ResnetBlock(in_dim, out_dim, kernel_size, dropout, activation, norm))
                in_dim = out_dim
                if i == 0 and self.use_attn:
                    attn.append(TransformerEncoderLayer(in_dim, kernel=1))
            up.block = block
            up.attn = attn
            up.noise = noise
            upsample = True if (i != 0) else False
            up.out = ToRGB(in_dim, output_nc, upsample, activation, norm)
            up.upsample = UpSample(in_dim, rample_with_conv, kernel_size=3)
            self.up.append(up)
        # end
        self.decode = ToRGB(in_dim, output_nc, True, activation, norm)

    def forward(self, x, mask=None):
        x = x + self.pos_embed(x) if self.use_pos else x
        x = self.conv_in(x)
        # middle
        x = self.mid.block1(x)
        if self.use_attn:
            x = self.mid.attn(x)
        x = self.mid.block2(x)
        # up
        skip = None
        for i in range(self.up_scale):
            for i_block in range(self.num_res_blocks):
                if self.add_noise:
                    x = self.up[i].noise[i_block](x, mask=mask)
                x = self.up[i].block[i_block](x)
                if len(self.up[i].attn) > 0:
                    x = self.up[i].attn[i_block](x)
            skip = self.up[i].out(x, skip)
            x = self.up[i].upsample(x)
        # end
        x = self.decode(x, skip)
        return x


class LinearEncoder(nn.Module):
    def __init__(self, input_nc, kernel_size=16, embed_dim=512):
        super(LinearEncoder, self).__init__()

        self.encode = PartialConv2d(input_nc, embed_dim, kernel_size=kernel_size, stride=kernel_size, return_mask=True)

    def forward(self, x, mask=None, return_mask=False):
        x, mask = self.encode(x, mask)
        if return_mask:
            return x, mask
        return x


class LinearDecoder(nn.Module):
    def __init__(self, output_nc, ngf=64, kernel_size=16, embed_dim=512, activation='gelu', norm='pixel'):
        super(LinearDecoder, self).__init__()

        activation_layer = get_nonlinearity_layer(activation)
        norm_layer = get_norm_layer(norm)

        self.decode = nn.Sequential(
            norm_layer(embed_dim),
            activation_layer,
            PartialConv2d(embed_dim, ngf*kernel_size*kernel_size, kernel_size=3, padding=1),
            nn.PixelShuffle(kernel_size),
            norm_layer(ngf),
            activation_layer,
            PartialConv2d(ngf, output_nc, kernel_size=3, padding=1)
        )

    def forward(self, x, mask=None):
        x = self.decode(x)

        return torch.tanh(x)


class ToRGB(nn.Module):
    def __init__(self, input_nc, output_nc, upsample=True, activation='gelu', norm='pixel'):
        super().__init__()

        activation_layer = get_nonlinearity_layer(activation)
        norm_layer = get_norm_layer(norm)

        if upsample:
            self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            input_nc = input_nc + output_nc

        self.conv = nn.Sequential(
            norm_layer(input_nc),
            activation_layer,
            PartialConv2d(input_nc, output_nc, kernel_size=3, padding=1)
        )

    def forward(self, input, skip=None):
        if skip is not None:
            skip = self.upsample(skip)
            input = torch.cat([input, skip], dim=1)

        out = self.conv(input)

        return torch.tanh(out)


######################################################################################
# base function for network structure
######################################################################################
def get_scheduler(optimizer, opt):
    """Return a learning rate scheduler
    Parameters:
        optimizer          -- the optimizer of the network
        opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. 
                              opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
    """
    if opt.lr_policy == 'linear':
        def lambda_rule(iter):
            lr_l = 1.0 - max(0, iter + opt.iter_count - opt.n_iter) / float(opt.n_iter_decay + 1)
            return lr_l
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'plateau':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
    elif opt.lr_policy == 'cosine':
        scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
    else:
        return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
    return scheduler


def init_weights(net, init_type='normal', init_gain=0.02, debug=False):
    """Initialize network weights.

    Parameters:
        net (network)   -- network to be initialized
        init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        init_gain (float)    -- scaling factor for normal, xavier and orthogonal.

    We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
    work better for some applications. Feel free to try yourself.
    """
    def init_func(m):  # define the initialization function
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if debug:
                print(classname)
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:  # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    net.apply(init_func)  # apply the initialization function <init_func>


def init_net(net, init_type='normal', init_gain=0.02, debug=False, initialize_weights=True):
    """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
    Parameters:
        net (network)      -- the network to be initialized
        init_type (str)    -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        gain (float)       -- scaling factor for normal, xavier and orthogonal.
        gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2

    Return an initialized network.
    """
    if initialize_weights:
        init_weights(net, init_type, init_gain=init_gain, debug=debug)
    return net


class Identity(nn.Module):
    def forward(self, x):
        return x


def get_norm_layer(norm_type='instance'):
    """Return a normalization layer

    Parameters:
        norm_type (str) -- the name of the normalization layer: batch | instance | none

    For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
    For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
    """
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=True)
    elif norm_type == 'pixel':
        norm_layer = functools.partial(PixelwiseNorm)
    elif norm_type == 'layer':
        norm_layer = functools.partial(nn.LayerNorm)
    elif norm_type == 'none':
        def norm_layer(x): return Identity()
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
    return norm_layer


def get_nonlinearity_layer(activation_type='PReLU'):
    """Get the activation layer for the networks"""
    if activation_type == 'relu':
        nonlinearity_layer = nn.ReLU()
    elif activation_type == 'gelu':
        nonlinearity_layer = nn.GELU()
    elif activation_type == 'leakyrelu':
        nonlinearity_layer = nn.LeakyReLU(0.2)
    elif activation_type == 'prelu':
        nonlinearity_layer = nn.PReLU()
    else:
        raise NotImplementedError('activation layer [%s] is not found' % activation_type)
    return nonlinearity_layer


class PixelwiseNorm(nn.Module):
    def __init__(self, input_nc):
        super(PixelwiseNorm, self).__init__()
        self.init = False
        self.alpha = nn.Parameter(torch.ones(1, input_nc, 1, 1))

    def forward(self, x, alpha=1e-8):
        """
        forward pass of the module
        :param x: input activations volume
        :param alpha: small number for numerical stability
        :return: y => pixel normalized activations
        """
        # x = x - x.mean(dim=1, keepdim=True)
        y = x.pow(2.).mean(dim=1, keepdim=True).add(alpha).rsqrt()  # [N1HW]
        y = x * y  # normalize the input x volume
        return self.alpha*y


###############################################################################
# BSD 3-Clause License
#
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Author & Contact: Guilin Liu ([email protected])
###############################################################################
class PartialConv2d(nn.Conv2d):
    def __init__(self, *args, **kwargs):

        # whether the mask is multi-channel or not
        if 'multi_channel' in kwargs:
            self.multi_channel = kwargs['multi_channel']
            kwargs.pop('multi_channel')
        else:
            self.multi_channel = False

        if 'return_mask' in kwargs:
            self.return_mask = kwargs['return_mask']
            kwargs.pop('return_mask')
        else:
            self.return_mask = False

        super(PartialConv2d, self).__init__(*args, **kwargs)

        if self.multi_channel:
            self.weight_maskUpdater = torch.ones(self.out_channels, self.in_channels, self.kernel_size[0],
                                                 self.kernel_size[1])
        else:
            self.weight_maskUpdater = torch.ones(1, 1, self.kernel_size[0], self.kernel_size[1])

        self.slide_winsize = self.weight_maskUpdater.shape[1] * self.weight_maskUpdater.shape[2] * \
                             self.weight_maskUpdater.shape[3]

        self.last_size = (None, None, None, None)
        self.update_mask = None
        self.mask_ratio = None

    def forward(self, input, mask_in=None):
        assert len(input.shape) == 4
        if mask_in is not None or self.last_size != tuple(input.shape):
            self.last_size = tuple(input.shape)

            with torch.no_grad():
                if self.weight_maskUpdater.type() != input.type():
                    self.weight_maskUpdater = self.weight_maskUpdater.to(input)

                if mask_in is None:
                    # if mask is not provided, create a mask
                    if self.multi_channel:
                        mask = torch.ones(input.data.shape[0], input.data.shape[1], input.data.shape[2],
                                          input.data.shape[3]).to(input)
                    else:
                        mask = torch.ones(1, 1, input.data.shape[2], input.data.shape[3]).to(input)
                else:
                    mask = mask_in

                self.update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride,
                                            padding=self.padding, dilation=self.dilation, groups=1)

                # for mixed precision training, change 1e-8 to 1e-6
                self.mask_ratio = self.slide_winsize / (self.update_mask + 1e-8)
                self.update_mask1 = torch.clamp(self.update_mask, 0, 1)
                self.mask_ratio = torch.mul(self.mask_ratio, self.update_mask1)

        raw_out = super(PartialConv2d, self).forward(torch.mul(input, mask) if mask_in is not None else input)

        if self.bias is not None:
            bias_view = self.bias.view(1, self.out_channels, 1, 1)
            output = torch.mul(raw_out - bias_view, self.mask_ratio) + bias_view
            output = torch.mul(output, self.update_mask1)
        else:
            output = torch.mul(raw_out, self.mask_ratio)

        if self.return_mask:
            return output, self.update_mask / self.slide_winsize   # replace the valid value to confident score
        else:
            return output