Spaces:
Runtime error
Runtime error
File size: 25,151 Bytes
ec0fdfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
import math
from einops import rearrange
from .transformer_ops.transformer_function import TransformerEncoderLayer
######################################################################################
# Attention-Aware Layer
######################################################################################
class AttnAware(nn.Module):
def __init__(self, input_nc, activation='gelu', norm='pixel', num_heads=2):
super(AttnAware, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
head_dim = input_nc // num_heads
self.num_heads = num_heads
self.input_nc = input_nc
self.scale = head_dim ** -0.5
self.query_conv = nn.Sequential(
norm_layer(input_nc),
activation_layer,
nn.Conv2d(input_nc, input_nc, kernel_size=1)
)
self.key_conv = nn.Sequential(
norm_layer(input_nc),
activation_layer,
nn.Conv2d(input_nc, input_nc, kernel_size=1)
)
self.weight = nn.Conv2d(self.num_heads*2, 2, kernel_size=1, stride=1)
self.to_out = ResnetBlock(input_nc * 2, input_nc, 1, 0, activation, norm)
def forward(self, x, pre=None, mask=None):
B, C, W, H = x.size()
q = self.query_conv(x).view(B, -1, W*H)
k = self.key_conv(x).view(B, -1, W*H)
v = x.view(B, -1, W*H)
q = rearrange(q, 'b (h d) n -> b h n d', h=self.num_heads)
k = rearrange(k, 'b (h d) n -> b h n d', h=self.num_heads)
v = rearrange(v, 'b (h d) n -> b h n d', h=self.num_heads)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
if pre is not None:
# attention-aware weight
B, head, N, N = dots.size()
mask_n = mask.view(B, -1, 1, W * H).expand_as(dots)
w_visible = (dots.detach() * mask_n).max(dim=-1, keepdim=True)[0]
w_invisible = (dots.detach() * (1-mask_n)).max(dim=-1, keepdim=True)[0]
weight = torch.cat([w_visible.view(B, head, W, H), w_invisible.view(B, head, W, H)], dim=1)
weight = self.weight(weight)
weight = F.softmax(weight, dim=1)
# visible attention score
pre_v = pre.view(B, -1, W*H)
pre_v = rearrange(pre_v, 'b (h d) n -> b h n d', h=self.num_heads)
dots_visible = torch.where(dots > 0, dots * mask_n, dots / (mask_n + 1e-8))
attn_visible = dots_visible.softmax(dim=-1)
context_flow = torch.einsum('bhij, bhjd->bhid', attn_visible, pre_v)
context_flow = rearrange(context_flow, 'b h n d -> b (h d) n').view(B, -1, W, H)
# invisible attention score
dots_invisible = torch.where(dots > 0, dots * (1 - mask_n), dots / ((1 - mask_n) + 1e-8))
attn_invisible = dots_invisible.softmax(dim=-1)
self_attention = torch.einsum('bhij, bhjd->bhid', attn_invisible, v)
self_attention = rearrange(self_attention, 'b h n d -> b (h d) n').view(B, -1, W, H)
# out
out = weight[:, :1, :, :]*context_flow + weight[:, 1:, :, :]*self_attention
else:
attn = dots.softmax(dim=-1)
out = torch.einsum('bhij, bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b (h d) n').view(B, -1, W, H)
out = self.to_out(torch.cat([out, x], dim=1))
return out
######################################################################################
# base modules
######################################################################################
class NoiseInjection(nn.Module):
def __init__(self):
super(NoiseInjection, self).__init__()
self.alpha = nn.Parameter(torch.zeros(1))
def forward(self, x, noise=None, mask=None):
if noise is None:
b, _, h, w = x.size()
noise = x.new_empty(b, 1, h, w).normal_()
if mask is not None:
mask = F.interpolate(mask, size=x.size()[2:], mode='bilinear', align_corners=True)
return x + self.alpha * noise * (1 - mask) # add noise only to the invisible part
return x + self.alpha * noise
class ConstantInput(nn.Module):
"""
add position embedding for each learned VQ word
"""
def __init__(self, channel, size=16):
super().__init__()
self.input = nn.Parameter(torch.randn(1, channel, size, size))
def forward(self, input):
batch = input.shape[0]
out = self.input.repeat(batch, 1, 1, 1)
return out
class UpSample(nn.Module):
""" sample with convolutional operation
:param input_nc: input channel
:param with_conv: use convolution to refine the feature
:param kernel_size: feature size
:param return_mask: return mask for the confidential score
"""
def __init__(self, input_nc, with_conv=False, kernel_size=3, return_mask=False):
super(UpSample, self).__init__()
self.with_conv = with_conv
self.return_mask = return_mask
if self.with_conv:
self.conv = PartialConv2d(input_nc, input_nc, kernel_size=kernel_size, stride=1,
padding=int(int(kernel_size-1)/2), return_mask=True)
def forward(self, x, mask=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
mask = F.interpolate(mask, scale_factor=2, mode='bilinear', align_corners=True) if mask is not None else mask
if self.with_conv:
x, mask = self.conv(x, mask)
if self.return_mask:
return x, mask
else:
return x
class DownSample(nn.Module):
""" sample with convolutional operation
:param input_nc: input channel
:param with_conv: use convolution to refine the feature
:param kernel_size: feature size
:param return_mask: return mask for the confidential score
"""
def __init__(self, input_nc, with_conv=False, kernel_size=3, return_mask=False):
super(DownSample, self).__init__()
self.with_conv = with_conv
self.return_mask = return_mask
if self.with_conv:
self.conv = PartialConv2d(input_nc, input_nc, kernel_size=kernel_size, stride=2,
padding=int(int(kernel_size-1)/2), return_mask=True)
def forward(self, x, mask=None):
if self.with_conv:
x, mask = self.conv(x, mask)
else:
x = F.avg_pool2d(x, kernel_size=2, stride=2)
mask = F.avg_pool2d(mask, kernel_size=2, stride=2) if mask is not None else mask
if self.return_mask:
return x, mask
else:
return x
class ResnetBlock(nn.Module):
def __init__(self, input_nc, output_nc=None, kernel=3, dropout=0.0, activation='gelu', norm='pixel', return_mask=False):
super(ResnetBlock, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
self.return_mask = return_mask
output_nc = input_nc if output_nc is None else output_nc
self.norm1 = norm_layer(input_nc)
self.conv1 = PartialConv2d(input_nc, output_nc, kernel_size=kernel, padding=int((kernel-1)/2), return_mask=True)
self.norm2 = norm_layer(output_nc)
self.conv2 = PartialConv2d(output_nc, output_nc, kernel_size=kernel, padding=int((kernel-1)/2), return_mask=True)
self.dropout = nn.Dropout(dropout)
self.act = activation_layer
if input_nc != output_nc:
self.short = PartialConv2d(input_nc, output_nc, kernel_size=1, stride=1, padding=0)
else:
self.short = Identity()
def forward(self, x, mask=None):
x_short = self.short(x)
x, mask = self.conv1(self.act(self.norm1(x)), mask)
x, mask = self.conv2(self.dropout(self.act(self.norm2(x))), mask)
if self.return_mask:
return (x + x_short) / math.sqrt(2), mask
else:
return (x + x_short) / math.sqrt(2)
class DiffEncoder(nn.Module):
def __init__(self, input_nc, ngf=64, kernel_size=2, embed_dim=512, down_scale=4, num_res_blocks=2, dropout=0.0,
rample_with_conv=True, activation='gelu', norm='pixel', use_attn=False):
super(DiffEncoder, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
# start
self.encode = PartialConv2d(input_nc, ngf, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)/2), return_mask=True)
# down
self.use_attn = use_attn
self.down_scale = down_scale
self.num_res_blocks = num_res_blocks
self.down = nn.ModuleList()
out_dim = ngf
for i in range(down_scale):
block = nn.ModuleList()
down = nn.Module()
in_dim = out_dim
out_dim = int(in_dim * 2)
down.downsample = DownSample(in_dim, rample_with_conv, kernel_size=2, return_mask=True)
for i_block in range(num_res_blocks):
block.append(ResnetBlock(in_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True))
in_dim = out_dim
down.block = block
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block1 = ResnetBlock(out_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True)
if self.use_attn:
self.mid.attn = TransformerEncoderLayer(out_dim, kernel=1)
self.mid.block2 = ResnetBlock(out_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True)
# end
self.conv_out = ResnetBlock(out_dim, embed_dim, kernel_size, dropout, activation, norm, return_mask=True)
def forward(self, x, mask=None, return_mask=False):
x, mask = self.encode(x, mask)
# down sampling
for i in range(self.down_scale):
x, mask = self.down[i].downsample(x, mask)
for i_block in range(self.num_res_blocks):
x, mask = self.down[i].block[i_block](x, mask)
# middle
x, mask = self.mid.block1(x, mask)
if self.use_attn:
x = self.mid.attn(x)
x, mask = self.mid.block2(x, mask)
# end
x, mask = self.conv_out(x, mask)
if return_mask:
return x, mask
return x
class DiffDecoder(nn.Module):
def __init__(self, output_nc, ngf=64, kernel_size=3, embed_dim=512, up_scale=4, num_res_blocks=2, dropout=0.0, word_size=16,
rample_with_conv=True, activation='gelu', norm='pixel', add_noise=False, use_attn=True, use_pos=True):
super(DiffDecoder, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
self.up_scale = up_scale
self.num_res_blocks = num_res_blocks
self.add_noise = add_noise
self.use_attn = use_attn
self.use_pos = use_pos
in_dim = ngf * (2 ** self.up_scale)
# start
if use_pos:
self.pos_embed = ConstantInput(embed_dim, size=word_size)
self.conv_in = PartialConv2d(embed_dim, in_dim, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)/2))
# middle
self.mid = nn.Module()
self.mid.block1 = ResnetBlock(in_dim, in_dim, kernel_size, dropout, activation, norm)
if self.use_attn:
self.mid.attn = TransformerEncoderLayer(in_dim, kernel=1)
self.mid.block2 = ResnetBlock(in_dim, in_dim, kernel_size, dropout, activation, norm)
# up
self.up = nn.ModuleList()
out_dim = in_dim
for i in range(up_scale):
block = nn.ModuleList()
attn = nn.ModuleList()
noise = nn.ModuleList()
up = nn.Module()
in_dim = out_dim
out_dim = int(in_dim / 2)
for i_block in range(num_res_blocks):
if add_noise:
noise.append(NoiseInjection())
block.append(ResnetBlock(in_dim, out_dim, kernel_size, dropout, activation, norm))
in_dim = out_dim
if i == 0 and self.use_attn:
attn.append(TransformerEncoderLayer(in_dim, kernel=1))
up.block = block
up.attn = attn
up.noise = noise
upsample = True if (i != 0) else False
up.out = ToRGB(in_dim, output_nc, upsample, activation, norm)
up.upsample = UpSample(in_dim, rample_with_conv, kernel_size=3)
self.up.append(up)
# end
self.decode = ToRGB(in_dim, output_nc, True, activation, norm)
def forward(self, x, mask=None):
x = x + self.pos_embed(x) if self.use_pos else x
x = self.conv_in(x)
# middle
x = self.mid.block1(x)
if self.use_attn:
x = self.mid.attn(x)
x = self.mid.block2(x)
# up
skip = None
for i in range(self.up_scale):
for i_block in range(self.num_res_blocks):
if self.add_noise:
x = self.up[i].noise[i_block](x, mask=mask)
x = self.up[i].block[i_block](x)
if len(self.up[i].attn) > 0:
x = self.up[i].attn[i_block](x)
skip = self.up[i].out(x, skip)
x = self.up[i].upsample(x)
# end
x = self.decode(x, skip)
return x
class LinearEncoder(nn.Module):
def __init__(self, input_nc, kernel_size=16, embed_dim=512):
super(LinearEncoder, self).__init__()
self.encode = PartialConv2d(input_nc, embed_dim, kernel_size=kernel_size, stride=kernel_size, return_mask=True)
def forward(self, x, mask=None, return_mask=False):
x, mask = self.encode(x, mask)
if return_mask:
return x, mask
return x
class LinearDecoder(nn.Module):
def __init__(self, output_nc, ngf=64, kernel_size=16, embed_dim=512, activation='gelu', norm='pixel'):
super(LinearDecoder, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
self.decode = nn.Sequential(
norm_layer(embed_dim),
activation_layer,
PartialConv2d(embed_dim, ngf*kernel_size*kernel_size, kernel_size=3, padding=1),
nn.PixelShuffle(kernel_size),
norm_layer(ngf),
activation_layer,
PartialConv2d(ngf, output_nc, kernel_size=3, padding=1)
)
def forward(self, x, mask=None):
x = self.decode(x)
return torch.tanh(x)
class ToRGB(nn.Module):
def __init__(self, input_nc, output_nc, upsample=True, activation='gelu', norm='pixel'):
super().__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
if upsample:
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
input_nc = input_nc + output_nc
self.conv = nn.Sequential(
norm_layer(input_nc),
activation_layer,
PartialConv2d(input_nc, output_nc, kernel_size=3, padding=1)
)
def forward(self, input, skip=None):
if skip is not None:
skip = self.upsample(skip)
input = torch.cat([input, skip], dim=1)
out = self.conv(input)
return torch.tanh(out)
######################################################################################
# base function for network structure
######################################################################################
def get_scheduler(optimizer, opt):
"""Return a learning rate scheduler
Parameters:
optimizer -- the optimizer of the network
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
"""
if opt.lr_policy == 'linear':
def lambda_rule(iter):
lr_l = 1.0 - max(0, iter + opt.iter_count - opt.n_iter) / float(opt.n_iter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def init_weights(net, init_type='normal', init_gain=0.02, debug=False):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if debug:
print(classname)
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type='normal', init_gain=0.02, debug=False, initialize_weights=True):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if initialize_weights:
init_weights(net, init_type, init_gain=init_gain, debug=debug)
return net
class Identity(nn.Module):
def forward(self, x):
return x
def get_norm_layer(norm_type='instance'):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=True)
elif norm_type == 'pixel':
norm_layer = functools.partial(PixelwiseNorm)
elif norm_type == 'layer':
norm_layer = functools.partial(nn.LayerNorm)
elif norm_type == 'none':
def norm_layer(x): return Identity()
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_nonlinearity_layer(activation_type='PReLU'):
"""Get the activation layer for the networks"""
if activation_type == 'relu':
nonlinearity_layer = nn.ReLU()
elif activation_type == 'gelu':
nonlinearity_layer = nn.GELU()
elif activation_type == 'leakyrelu':
nonlinearity_layer = nn.LeakyReLU(0.2)
elif activation_type == 'prelu':
nonlinearity_layer = nn.PReLU()
else:
raise NotImplementedError('activation layer [%s] is not found' % activation_type)
return nonlinearity_layer
class PixelwiseNorm(nn.Module):
def __init__(self, input_nc):
super(PixelwiseNorm, self).__init__()
self.init = False
self.alpha = nn.Parameter(torch.ones(1, input_nc, 1, 1))
def forward(self, x, alpha=1e-8):
"""
forward pass of the module
:param x: input activations volume
:param alpha: small number for numerical stability
:return: y => pixel normalized activations
"""
# x = x - x.mean(dim=1, keepdim=True)
y = x.pow(2.).mean(dim=1, keepdim=True).add(alpha).rsqrt() # [N1HW]
y = x * y # normalize the input x volume
return self.alpha*y
###############################################################################
# BSD 3-Clause License
#
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Author & Contact: Guilin Liu ([email protected])
###############################################################################
class PartialConv2d(nn.Conv2d):
def __init__(self, *args, **kwargs):
# whether the mask is multi-channel or not
if 'multi_channel' in kwargs:
self.multi_channel = kwargs['multi_channel']
kwargs.pop('multi_channel')
else:
self.multi_channel = False
if 'return_mask' in kwargs:
self.return_mask = kwargs['return_mask']
kwargs.pop('return_mask')
else:
self.return_mask = False
super(PartialConv2d, self).__init__(*args, **kwargs)
if self.multi_channel:
self.weight_maskUpdater = torch.ones(self.out_channels, self.in_channels, self.kernel_size[0],
self.kernel_size[1])
else:
self.weight_maskUpdater = torch.ones(1, 1, self.kernel_size[0], self.kernel_size[1])
self.slide_winsize = self.weight_maskUpdater.shape[1] * self.weight_maskUpdater.shape[2] * \
self.weight_maskUpdater.shape[3]
self.last_size = (None, None, None, None)
self.update_mask = None
self.mask_ratio = None
def forward(self, input, mask_in=None):
assert len(input.shape) == 4
if mask_in is not None or self.last_size != tuple(input.shape):
self.last_size = tuple(input.shape)
with torch.no_grad():
if self.weight_maskUpdater.type() != input.type():
self.weight_maskUpdater = self.weight_maskUpdater.to(input)
if mask_in is None:
# if mask is not provided, create a mask
if self.multi_channel:
mask = torch.ones(input.data.shape[0], input.data.shape[1], input.data.shape[2],
input.data.shape[3]).to(input)
else:
mask = torch.ones(1, 1, input.data.shape[2], input.data.shape[3]).to(input)
else:
mask = mask_in
self.update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=1)
# for mixed precision training, change 1e-8 to 1e-6
self.mask_ratio = self.slide_winsize / (self.update_mask + 1e-8)
self.update_mask1 = torch.clamp(self.update_mask, 0, 1)
self.mask_ratio = torch.mul(self.mask_ratio, self.update_mask1)
raw_out = super(PartialConv2d, self).forward(torch.mul(input, mask) if mask_in is not None else input)
if self.bias is not None:
bias_view = self.bias.view(1, self.out_channels, 1, 1)
output = torch.mul(raw_out - bias_view, self.mask_ratio) + bias_view
output = torch.mul(output, self.update_mask1)
else:
output = torch.mul(raw_out, self.mask_ratio)
if self.return_mask:
return output, self.update_mask / self.slide_winsize # replace the valid value to confident score
else:
return output |