Spaces:
Runtime error
Runtime error
File size: 14,236 Bytes
ec0fdfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
####################################################################################################
# adversarial loss for different gan mode
####################################################################################################
class GANLoss(nn.Module):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
Parameters:
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
target_real_label (bool) - - label for a real image
target_fake_label (bool) - - label of a fake image
Note: Do not use sigmoid as the last layer of Discriminator.
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
"""
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode == 'hinge':
self.loss = nn.ReLU()
elif gan_mode in ['wgangp', 'nonsaturating']:
self.loss = None
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
"""Create label tensors with the same size as the input.
Parameters:
prediction (tensor) - - tpyically the prediction from a discriminator
target_is_real (bool) - - if the ground truth label is for real examples or fake examples
Returns:
A label tensor filled with ground truth label, and with the size of the input
"""
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(prediction)
def calculate_loss(self, prediction, target_is_real, is_dis=False):
"""Calculate loss given Discriminator's output and grount truth labels.
Parameters:
prediction (tensor) - - tpyically the prediction output from a discriminator
target_is_real (bool) - - if the ground truth label is for real examples or fake examples
Returns:
the calculated loss.
"""
if self.gan_mode in ['lsgan', 'vanilla']:
target_tensor = self.get_target_tensor(prediction, target_is_real)
loss = self.loss(prediction, target_tensor)
if self.gan_mode == 'lsgan':
loss = loss * 0.5
else:
if is_dis:
if target_is_real:
prediction = -prediction
if self.gan_mode == 'wgangp':
loss = prediction.mean()
elif self.gan_mode == 'nonsaturating':
loss = F.softplus(prediction).mean()
elif self.gan_mode == 'hinge':
loss = self.loss(1+prediction).mean()
else:
if self.gan_mode == 'nonsaturating':
loss = F.softplus(-prediction).mean()
else:
loss = -prediction.mean()
return loss
def __call__(self, predictions, target_is_real, is_dis=False):
"""Calculate loss for multi-scales gan"""
if isinstance(predictions, list):
losses = []
for prediction in predictions:
losses.append(self.calculate_loss(prediction, target_is_real, is_dis))
loss = sum(losses)
else:
loss = self.calculate_loss(predictions, target_is_real, is_dis)
return loss
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
Arguments:
netD (network) -- discriminator network
real_data (tensor array) -- real examples
fake_data (tensor array) -- generated examples from the generator
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
type (str) -- if we mix real and fake data or not [real | fake | mixed].
constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
lambda_gp (float) -- weight for this loss
Returns the gradient penalty loss
"""
if lambda_gp > 0.0:
if type == 'real': # either use real examples, fake examples, or a linear interpolation of two.
interpolatesv = real_data
elif type == 'fake':
interpolatesv = fake_data
elif type == 'mixed':
alpha = torch.rand(real_data.shape[0], 1, device=device)
alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
else:
raise NotImplementedError('{} not implemented'.format(type))
interpolatesv.requires_grad_(True)
disc_interpolates = netD(interpolatesv)
if isinstance(disc_interpolates, list):
gradients = 0
for disc_interpolate in disc_interpolates:
gradients += torch.autograd.grad(outputs=disc_interpolate, inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolate.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
else:
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(real_data.size(0), -1) # flat the data
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
return gradient_penalty, gradients
else:
return 0.0, None
####################################################################################################
# trained LPIPS loss
####################################################################################################
def normalize_tensor(x, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
return x/(norm_factor+eps)
def spatial_average(x, keepdim=True):
return x.mean([2, 3], keepdim=keepdim)
class NetLinLayer(nn.Module):
""" A single linear layer which does a 1x1 conv """
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(), ] if (use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
self.model = nn.Sequential(*layers)
class LPIPSLoss(nn.Module):
"""
Learned perceptual metric
https://github.com/richzhang/PerceptualSimilarity
"""
def __init__(self, use_dropout=True, ckpt_path=None):
super(LPIPSLoss, self).__init__()
self.path = ckpt_path
self.net = VGG16()
self.chns = [64, 128, 256, 512, 512] # vg16 features
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.load_from_pretrained()
for param in self.parameters():
param.requires_grad = False
def load_from_pretrained(self):
self.load_state_dict(torch.load(self.path, map_location=torch.device("cpu")), strict=False)
print("loaded pretrained LPIPS loss from {}".format(self.path))
def _get_features(self, vgg_f):
names = ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']
feats = []
for i in range(len(names)):
name = names[i]
feat = vgg_f[name]
feats.append(feat)
return feats
def forward(self, x, y):
x_vgg, y_vgg = self._get_features(self.net(x)), self._get_features(self.net(y))
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
reses = []
loss = 0
for i in range(len(self.chns)):
x_feats, y_feats = normalize_tensor(x_vgg[i]), normalize_tensor(y_vgg[i])
diffs = (x_feats - y_feats) ** 2
res = spatial_average(lins[i].model(diffs))
loss += res
reses.append(res)
return loss
class PerceptualLoss(nn.Module):
r"""
Perceptual loss, VGG-based
https://arxiv.org/abs/1603.08155
https://github.com/dxyang/StyleTransfer/blob/master/utils.py
"""
def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 0.0]):
super(PerceptualLoss, self).__init__()
self.add_module('vgg', VGG16())
self.criterion = nn.L1Loss()
self.weights = weights
def __call__(self, x, y):
# Compute features
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
content_loss = 0.0
content_loss += self.weights[0] * self.criterion(x_vgg['relu1_2'], y_vgg['relu1_2']) if self.weights[0] > 0 else 0
content_loss += self.weights[1] * self.criterion(x_vgg['relu2_2'], y_vgg['relu2_2']) if self.weights[1] > 0 else 0
content_loss += self.weights[2] * self.criterion(x_vgg['relu3_3'], y_vgg['relu3_3']) if self.weights[2] > 0 else 0
content_loss += self.weights[3] * self.criterion(x_vgg['relu4_3'], y_vgg['relu4_3']) if self.weights[3] > 0 else 0
content_loss += self.weights[4] * self.criterion(x_vgg['relu5_3'], y_vgg['relu5_3']) if self.weights[4] > 0 else 0
return content_loss
class Normalization(nn.Module):
def __init__(self, device):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).to(device)
self.mean = mean.view(-1, 1, 1)
self.std = std.view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
class VGG16(nn.Module):
def __init__(self):
super(VGG16, self).__init__()
features = models.vgg16(pretrained=True).features
self.relu1_1 = torch.nn.Sequential()
self.relu1_2 = torch.nn.Sequential()
self.relu2_1 = torch.nn.Sequential()
self.relu2_2 = torch.nn.Sequential()
self.relu3_1 = torch.nn.Sequential()
self.relu3_2 = torch.nn.Sequential()
self.relu3_3 = torch.nn.Sequential()
self.relu4_1 = torch.nn.Sequential()
self.relu4_2 = torch.nn.Sequential()
self.relu4_3 = torch.nn.Sequential()
self.relu5_1 = torch.nn.Sequential()
self.relu5_2 = torch.nn.Sequential()
self.relu5_3 = torch.nn.Sequential()
for x in range(2):
self.relu1_1.add_module(str(x), features[x])
for x in range(2, 4):
self.relu1_2.add_module(str(x), features[x])
for x in range(4, 7):
self.relu2_1.add_module(str(x), features[x])
for x in range(7, 9):
self.relu2_2.add_module(str(x), features[x])
for x in range(9, 12):
self.relu3_1.add_module(str(x), features[x])
for x in range(12, 14):
self.relu3_2.add_module(str(x), features[x])
for x in range(14, 16):
self.relu3_3.add_module(str(x), features[x])
for x in range(16, 18):
self.relu4_1.add_module(str(x), features[x])
for x in range(18, 21):
self.relu4_2.add_module(str(x), features[x])
for x in range(21, 23):
self.relu4_3.add_module(str(x), features[x])
for x in range(23, 26):
self.relu5_1.add_module(str(x), features[x])
for x in range(26, 28):
self.relu5_2.add_module(str(x), features[x])
for x in range(28, 30):
self.relu5_3.add_module(str(x), features[x])
# don't need the gradients, just want the features
for param in self.parameters():
param.requires_grad = False
def forward(self, x,):
relu1_1 = self.relu1_1(x)
relu1_2 = self.relu1_2(relu1_1)
relu2_1 = self.relu2_1(relu1_2)
relu2_2 = self.relu2_2(relu2_1)
relu3_1 = self.relu3_1(relu2_2)
relu3_2 = self.relu3_2(relu3_1)
relu3_3 = self.relu3_3(relu3_2)
relu4_1 = self.relu4_1(relu3_3)
relu4_2 = self.relu4_2(relu4_1)
relu4_3 = self.relu4_3(relu4_2)
relu5_1 = self.relu5_1(relu4_3)
relu5_2 = self.relu5_2(relu5_1)
relu5_3 = self.relu5_3(relu5_2)
out = {
'relu1_1': relu1_1,
'relu1_2': relu1_2,
'relu2_1': relu2_1,
'relu2_2': relu2_2,
'relu3_1': relu3_1,
'relu3_2': relu3_2,
'relu3_3': relu3_3,
'relu4_1': relu4_1,
'relu4_2': relu4_2,
'relu4_3': relu4_3,
'relu5_1': relu5_1,
'relu5_2': relu5_2,
'relu5_3': relu5_3,
}
return out |