Spaces:
Runtime error
Runtime error
File size: 3,370 Bytes
ec0fdfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import torch
import torch.nn as nn
import math
######################################################################################
# position embedding
######################################################################################
class PositionEmbeddingLearned(nn.Module):
"""
This is a learned version of the position embedding
"""
def __init__(self, num_pos_feats=256):
super().__init__()
self.row_embed = nn.Embedding(32, num_pos_feats)
self.col_embed = nn.Embedding(32, num_pos_feats)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.row_embed.weight)
nn.init.uniform_(self.col_embed.weight)
def forward(self, x, mask):
h, w = x.shape[-2:]
i = torch.arange(w, device=x.device)
j = torch.arange(h, device=x.device)
x_emb = self.col_embed(i).unsqueeze(0).repeat(h, 1, 1)
y_emb = self.row_embed(j).unsqueeze(1).repeat(1, w, 1)
pos = (x_emb + y_emb).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
return pos
class PositionEmbeddingSine(nn.Module):
"""
This is a standard version of the position embedding, very similar to the one used by the
"Attention is all you need" paper, generalized to work on examples
"""
def __init__(self, feats_dim=512, temperature=10000, normalize=False, scale=None):
"""
explicitly encode the position using the sinusoid:
PE(pos,2i) = sin(pos/temperature^(2*i/d_model))
PE(pos,2i+1) = cos(pos/temperature^(2*i/d_model))
:param feats_dim: the dimension of features, each dimension of the positional embedding to a sinusoid
:param temperature: wavelengths from a geometric progression from scale
:param normalize: whether to normalize the position to (0,1)
:param scale: scale for the position embedding
"""
super(PositionEmbeddingSine, self).__init__()
self.feats_dim = feats_dim
self.T = temperature
self.norm = normalize
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask):
x_embed = mask.cumsum(1, dtype=torch.float32)
y_embed = mask.cumsum(2, dtype=torch.float32)
if self.norm:
eps = 1e-5
x_embed = x_embed / (x_embed[:, -1:, :] + eps) * self.scale
y_embed = y_embed / (y_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.feats_dim, dtype=torch.float32, device=x.device)
dim_t = self.T ** (2*(dim_t//2)/self.feats_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x[:, :, :, 0::2], pos_x[:, :, :, 1::2] = pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()
pos_y[:, :, :, 0::2], pos_y[:, :, :, 1::2] = pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()
pos = (pos_x + pos_y).permute(0, 3, 1, 2) * 0.5
return pos
def build_position_embed(embed_type='learned', feats_dim=512, temperature=10000):
if embed_type == 'sine':
pos_embed = PositionEmbeddingSine(feats_dim, temperature, normalize=True)
elif embed_type == 'learned':
pos_embed = PositionEmbeddingLearned(feats_dim)
else:
raise ValueError(f"nor supported {embed_type}")
return pos_embed
|