""" Generate a large batch of samples from a super resolution model, given a batch of samples from a regular model from image_sample.py. """ import argparse import os import blobfile as bf import numpy as np import torch as th import torch.distributed as dist from guided_diffusion import dist_util, logger from guided_diffusion.script_util import ( sr_model_and_diffusion_defaults, sr_create_model_and_diffusion, args_to_dict, add_dict_to_argparser, ) def main(): args = create_argparser().parse_args() dist_util.setup_dist() logger.configure() logger.log("creating model...") model, diffusion = sr_create_model_and_diffusion( **args_to_dict(args, sr_model_and_diffusion_defaults().keys()) ) model.load_state_dict( dist_util.load_state_dict(args.model_path, map_location="cpu") ) model.to(dist_util.dev()) if args.use_fp16: model.convert_to_fp16() model.eval() logger.log("loading data...") data = load_data_for_worker(args.base_samples, args.batch_size, args.class_cond) logger.log("creating samples...") all_images = [] while len(all_images) * args.batch_size < args.num_samples: model_kwargs = next(data) model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()} sample = diffusion.p_sample_loop( model, (args.batch_size, 3, args.large_size, args.large_size), clip_denoised=args.clip_denoised, model_kwargs=model_kwargs, ) sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8) sample = sample.permute(0, 2, 3, 1) sample = sample.contiguous() all_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())] dist.all_gather(all_samples, sample) # gather not supported with NCCL for sample in all_samples: all_images.append(sample.cpu().numpy()) logger.log(f"created {len(all_images) * args.batch_size} samples") arr = np.concatenate(all_images, axis=0) arr = arr[: args.num_samples] if dist.get_rank() == 0: shape_str = "x".join([str(x) for x in arr.shape]) out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz") logger.log(f"saving to {out_path}") np.savez(out_path, arr) dist.barrier() logger.log("sampling complete") def load_data_for_worker(base_samples, batch_size, class_cond): with bf.BlobFile(base_samples, "rb") as f: obj = np.load(f) image_arr = obj["arr_0"] if class_cond: label_arr = obj["arr_1"] rank = dist.get_rank() num_ranks = dist.get_world_size() buffer = [] label_buffer = [] while True: for i in range(rank, len(image_arr), num_ranks): buffer.append(image_arr[i]) if class_cond: label_buffer.append(label_arr[i]) if len(buffer) == batch_size: batch = th.from_numpy(np.stack(buffer)).float() batch = batch / 127.5 - 1.0 batch = batch.permute(0, 3, 1, 2) res = dict(low_res=batch) if class_cond: res["y"] = th.from_numpy(np.stack(label_buffer)) yield res buffer, label_buffer = [], [] def create_argparser(): defaults = dict( clip_denoised=True, num_samples=10000, batch_size=16, use_ddim=False, base_samples="", model_path="", ) defaults.update(sr_model_and_diffusion_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": main()