import os import glob import shutil import lpips import numpy as np import argparse from PIL import Image from skimage.metrics import structural_similarity as ssim from skimage.metrics import peak_signal_noise_ratio as psnr from dataloader.image_folder import make_dataset from util import util import torch parser = argparse.ArgumentParser(description='Image quality evaluations on the dataset') parser.add_argument('--gt_path', type=str, default='../results/', help='path to original gt data') parser.add_argument('--g_path', type=str, default='../results.', help='path to the generated data') parser.add_argument('--save_path', type=str, default=None, help='path to save the best results') parser.add_argument('--center', action='store_true', help='only calculate the center masked regions for the image quality') parser.add_argument('--num_test', type=int, default=0, help='how many examples to load for testing') args = parser.parse_args() lpips_alex = lpips.LPIPS(net='alex') def calculate_score(img_gt, img_test): """ function to calculate the image quality score :param img_gt: original image :param img_test: generated image :return: mae, ssim, psnr """ l1loss = np.mean(np.abs(img_gt-img_test)) psnr_score = psnr(img_gt, img_test, data_range=1) ssim_score = ssim(img_gt, img_test, multichannel=True, data_range=1, win_size=11) lpips_dis = lpips_alex(torch.from_numpy(img_gt).permute(2, 0, 1), torch.from_numpy(img_test).permute(2, 0, 1), normalize=True) return l1loss, ssim_score, psnr_score, lpips_dis.data.numpy().item() if __name__ == '__main__': gt_paths, gt_size = make_dataset(args.gt_path) g_paths, g_size = make_dataset(args.g_path) l1losses = [] ssims = [] psnrs = [] lpipses = [] size = args.num_test if args.num_test > 0 else gt_size for i in range(size): gt_img = Image.open(gt_paths[i + 0*2000]).resize([256, 256]).convert('RGB') gt_numpy = np.array(gt_img).astype(np.float32) / 255.0 if args.center: gt_numpy = gt_numpy[64:192, 64:192, :] l1loss_sample = 1000 ssim_sample = 0 psnr_sample = 0 lpips_sample = 1000 name = gt_paths[i + 0*2000].split('/')[-1].split(".")[0] + "*" g_paths = sorted(glob.glob(os.path.join(args.g_path, name))) num_files = len(g_paths) for j in range(num_files): index = j try: g_img = Image.open(g_paths[j]).resize([256, 256]).convert('RGB') g_numpy = np.array(g_img).astype(np.float32) / 255.0 if args.center: g_numpy = g_numpy[64:192, 64:192, :] l1loss, ssim_score, psnr_score, lpips_score = calculate_score(gt_numpy, g_numpy) if l1loss - ssim_score - psnr_score + lpips_score < l1loss_sample - ssim_sample - psnr_sample + lpips_sample: l1loss_sample, ssim_sample, psnr_sample, lpips_sample = l1loss, ssim_score, psnr_score, lpips_score best_index = index except: print(g_paths[index]) if l1loss_sample != 1000 and ssim_sample !=0 and psnr_sample != 0: print(g_paths[best_index]) print(l1loss_sample, ssim_sample, psnr_sample, lpips_sample) l1losses.append(l1loss_sample) ssims.append(ssim_sample) psnrs.append(psnr_sample) lpipses.append(lpips_sample) if args.save_path is not None: util.mkdir(args.save_path) shutil.copy(g_paths[best_index], args.save_path) print('{:>10},{:>10},{:>10},{:>10}'.format('l1loss', 'SSIM', 'PSNR', 'LPIPS')) print('{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(np.mean(l1losses), np.mean(ssims), np.mean(psnrs), np.mean(lpipses))) print('{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(np.var(l1losses), np.var(ssims), np.var(psnrs), np.var(lpipses)))