import time from options.train_options import TrainOptions from dataloader.data_loader import dataloader from model import create_model from util.visualizer import Visualizer if __name__ == '__main__': opt = TrainOptions().parse() # get training options dataset = dataloader(opt) # create a dataset dataset_size = len(dataset) * opt.batch_size print('training images = %d' % dataset_size) model = create_model(opt) # create a model given opt.model and other options visualizer = Visualizer(opt) # create a visualizer total_iters = opt.iter_count # the total number of training iterations epoch = 0 max_iteration = opt.n_iter + opt.n_iter_decay while (total_iters < max_iteration): epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch += 1 # the number of training iterations in current epoch, reset to 0 every epoch epoch_iter = 0 visualizer.reset() # reset the visualizer for i, data in enumerate(dataset): iter_start_time = time.time() if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time if total_iters == 0: model.setup(opt) model.parallelize() total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.log_imgs() visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, total_iters, losses, t_comp, t_data) if opt.display_id is None or opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) if total_iters % opt.save_latest_freq == 0: # cache our latest model every iterations print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) print(opt.name) # it's useful to occasionally show the experiment name on console model.save_networks('latest') if total_iters % opt.save_iters_freq == 0: # cache our model every epochs print('saving the model at the end of iters %d' % (total_iters)) model.save_networks('latest') model.save_networks(total_iters) print('End of iters %d / %d \t Time Taken: %d sec' % (total_iters, max_iteration, time.time() - epoch_start_time)) model.update_learning_rate()